Homework 1

Due: Wednesday, September 16
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the map $f: x \mapsto(x+1)^{2}$. Compute the inverse image sets $f^{-1}(A)$ of the following sets A :
a) $\{-9\}$,
b) $\{-1,0,4\}$,
c) $[0,+\infty)=\{x \in \mathbb{R}: x \geqslant 0\}$.

Problem 2. Let $f: X \rightarrow Y$ be a map, and consider $A_{1}, A_{2} \subset X$.
a) Prove that $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$.
b) Prove that $f\left(A_{1} \cap A_{2}\right) \subset f\left(A_{1}\right) \cap f\left(A_{2}\right)$ and give an example in which equality fails.

Problem 3. Suppose that $S=\{1,2,3\}$. Define a map $\pi: S \rightarrow S$ by

$$
\begin{aligned}
& \pi(1)=2, \\
& \pi(2)=3, \\
& \pi(3)=1 .
\end{aligned}
$$

a) Find the images of elements of S under the maps $(\pi \circ \pi)$ and $(\pi \circ \pi \circ \pi)$.
b) Is π surjective? injective?. If it is bijective, find π^{-1}.

Problem 4. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps between sets. Prove that
a) If $g \circ f$ is injective, then f is injective;
b) If $g \circ f$ is surjective then g is surjective.

Problem 5. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be invertible mappings; that is, mappings such that f^{-1} and g^{-1} exist. Show that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

