Homework 11

Due: Wednesday, December 2

Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Let D_n be a dihedral group and $N \subset D_n$ the subgroup consisting of all rotations. Prove that N is *normal*.

Problem 2. Let $N \subset D_n$ be as in problem 1. Prove that the quotient group (which is well-defined since $N \subset D_n$ is normal) is isomorphic to \mathbb{Z}_2 .

Problem 3. Consider a multiplicative group $(\mathbb{R}\setminus\{0\}, \cdot)$. Define a homomorphism

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\} \qquad f(x) = x^2.$$

Find Ker(f) and Im(f) and use the first isomorphism theorem to identify

$$(\mathbb{R}\setminus\{0\})/\operatorname{Ker}(f).$$

Problem 4. Let $f: G \to G'$ be a nontrivial¹ homomorphism. Given that |G| = 15 and |G'| = 18, find the size of Ker(f).

Problem 5. Let *G* be a group and *H* a normal subgroup of *G* such that *H* and *G*/*H* are abelian. Is it true that *G* is abelian?

¹The *trivial* homomorphism is the one sending all the elements in G to the neutral element in G'