Homework 2

Due: Wednesday, September 23

Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. *a*) Given any $a \in \mathbb{Z}_8$ what are possible values of $a^2 \in \mathbb{Z}_8$?

b) Prove that equation $x^2 - 8y^2 = 5$ does not have solutions in \mathbb{Z} .

Problem 2. Using Euclidean algorithm find gcd(36, 235) and provide a solution in \mathbb{Z} to

 $36u + 235v = \gcd(36, 235).$

Problem 3. Solve in \mathbb{Z}_{235} equation

 $36 \cdot x \equiv 7 \mod 235.$

Problem 4. *a*) Solve equation $x^2 = -1$ in \mathbb{Z}_{13} .

b) Let $n \in \mathbb{Z}$ be a positive integer. Prove that equation

xy = 0

for $x, y \in \mathbb{Z}_n$ has nonzero solutions if and only if *n* is **not** prime.

Problem 5. Define the least common multiple of two positive integers $a, b \in \mathbb{Z}$ to be the smallest positive integer *m* such that *a* and *b* divide *m*. Denote this integer by lcm(a, b). Prove that

gcd(a, b)lcm(a, b) = ab.

Hint: express gcd(a, b) and lcm(a, b) in terms of the prime factorizations of *a* and *b*.