Homework 2

Due: Wednesday, September 23
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. a) Given any $a \in \mathbb{Z}_{8}$ what are possible values of $a^{2} \in \mathbb{Z}_{8}$?
b) Prove that equation $x^{2}-8 y^{2}=5$ does not have solutions in \mathbb{Z}.

Problem 2. Using Euclidean algorithm find $\operatorname{gcd}(36,235)$ and provide a solution in \mathbb{Z} to

$$
36 u+235 v=\operatorname{gcd}(36,235) .
$$

Problem 3. Solve in \mathbb{Z}_{235} equation

$$
36 \cdot x \equiv 7 \quad \bmod 235
$$

Problem 4. a) Solve equation $x^{2}=-1$ in \mathbb{Z}_{13}.
b) Let $n \in \mathbb{Z}$ be a positive integer. Prove that equation

$$
x y=0
$$

for $x, y \in \mathbb{Z}_{n}$ has nonzero solutions if and only if n is not prime.
Problem 5. Define the least common multiple of two positive integers $a, b \in \mathbb{Z}$ to be the smallest positive integer m such that a and b divide m. Denote this integer by $\operatorname{lcm}(a, b)$. Prove that

$$
\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=a b
$$

Hint: express $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ in terms of the prime factorizations of a and b.

