Homework 4

Due: Wednesday, October 7
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Prove that

$$
G=\{a+\sqrt{2} b \mid a, b \in \mathbb{Q}, a \text { and } b \text { not both zero }\}
$$

is a subgroup of $(\mathbb{R} \backslash\{0\}, \times)$.
Recall that \mathbb{Q} denotes the set of rational numbers, while \mathbb{R} denotes the set of real numbers. You can use without a proof that $\sqrt{2}$ is irrational.

Problem 2. Prove that a subgroup $H \subset \mathbb{Z}$ (with respect to addition) such that

$$
6,10,15 \in H
$$

must coincide with \mathbb{Z}.
Problem 3. a) Compute the Cayley table of the group $\left(\mathbb{Z}_{4},+\right)$.
b) Compute the Cayley table of the group $\left(\mathbb{Z}_{5}^{\times}, \times\right)$.

Problem 4. Prove that the group $\left(\mathbb{Z}_{8}^{\times}, \times\right)$is not cyclic.
Problem 5. a) Prove that the congruence class $2 \in \mathbb{Z}_{13}$ generates (multiplicatively) the group $\left(\mathbb{Z}_{13}^{\times}, \times\right)$.
b) Find all other generators of this group.

