Homework 5

Due: Wednesday, October 14
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. List all the elements of the following cyclic subgroups:
a) $\langle 10\rangle \subset\left(\mathbb{Z}_{15},+\right)$
b) $\langle 7\rangle \subset\left(\mathbb{Z}_{9},+\right)$

Problem 2. H is a cyclic subgroup of $\left(\mathbb{Z}_{16}^{\times}, \times\right)$. What are the possible sizes $|H|$ of H ?
Problem 3. a) Prove that the product group $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, of $\left(\mathbb{Z}_{2},+\right)$ and $\left(\mathbb{Z}_{2},+\right)$ is not cyclic.
b) Consider the product group $G=\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ of the corresponding additive groups. Prove that G is cyclic with the generator $(1,1) \in \mathbb{Z}_{2} \times \mathbb{Z}_{3}$.

Problem 4. Let

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)
$$

be elements of $G L_{2}(\mathbb{R})$ (considered as usual with respect to the matrix multiplication). Show that A and B have finite order, but their product $A B$ has infinite order.

Problem 5. Let $(G, *)$ be a commutative group, and $x, y \in G$ are two elements of a finite order. Prove that the element $x * y \in G$ also has a finite order.

