Homework 6

Due: Wednesday, October 28

Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Prove that for coprime $n, m \in \mathbb{Z}$ group $^{1} \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ is isomorphic to the group $\mathbb{Z}_{n m}$.
Problem 2. Prove that $\left(\mathbb{Z}_{8}^{\times}, \times\right)$is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Problem 3. Let $G=G L_{2}(\mathbb{R})$ be a group of 2×2 matrices, and

$$
H=S L_{2}(\mathbb{R}):=\left\{A \in G L_{2}(\mathbb{R}) \mid \operatorname{det}(A)=1\right\}
$$

be a subgroup of matrices with determinant 1. Describe the partition of G into the left cosets of H. Does the answer change if we consider right cosets instead?

Problem 4. G is a finite group with elements x and y of orders 5 and 7 respectively. Prove that $|G| \geqslant 35$.
Problem 5. Let $\left(\mathbb{Z}_{60}^{\times}, \times\right)$be the multiplicative group of units in \mathbb{Z}_{60}. Prove that for any $a \in \mathbb{Z}_{60}^{\times}$we have

$$
a^{16}=1 \bmod 60 .
$$

Hint: check that $\left|\mathbb{Z}_{60}^{\times}\right|=16$ and use Lagrange's theorem

[^0]
[^0]: ${ }^{1}$ Here as usual we consider groups \mathbb{Z}_{k} with respect to addition

