Homework 7

Due: Wednesday, November 4
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. For each of the following permutations find their decomposition into independent cycles, and compute σ^{100} and σ^{-1} :
a) $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 2 & 1 & 3 & 5\end{array}\right)$, b) $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4\end{array}\right)$, c) $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3\end{array}\right)$.

Problem 2. Let $\left(a_{1} a_{2} \ldots a_{k}\right) \in S_{n}$ be any cycle of length k. Prove that in S_{n} we have the following identity:

$$
\left(a_{1} a_{2} \ldots a_{k}\right)=\left(a_{1} a_{k}\right)\left(a_{1} a_{k-1}\right) \ldots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)
$$

NB. Composition of permutations is applied from right to left.
Problem 3. Prove that any permutation $\sigma \in S_{n}$ can be factored as a product of not necessarily independent cycles of length 2 (cycles of length 2 are called transpositions).

Problem 4. Figure out (with a proof) whether the following statement is true of false.
If $\sigma \in S_{n}$ is a cycle, then σ^{2} is also a cycle.
Problem 5. From the class we know that possible orders of elements in the group S_{4} are 1,2,3,4. Find the number of elements of order d for every $d \in\{1,2,3,4\}$.
Hint: your counts should add up to $\left|S_{4}\right|=4!=24$

