Homework 7

Due: Wednesday, November 4

Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. For each of the following permutations find their decomposition into independent cycles, and compute σ^{100} and σ^{-1} :

a) $\sigma = ($	1	2	3	4	5	6)	b = -	$\sigma = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	2	3	4	5	6)	, c) $\sigma = \left(\int_{-\infty}^{\infty} \sigma \left(\sigma \right) d\sigma \right)$	1	2	3	4	5)	
	4	6	2	1	3	5)'	<i>b</i>) <i>o</i> =		3	1	5	6	4)		4	5	2	1	3)	

Problem 2. Let $(a_1a_2...a_k) \in S_n$ be any cycle of length *k*. Prove that in S_n we have the following identity:

 $(a_1a_2...a_k) = (a_1a_k)(a_1a_{k-1})...(a_1a_3)(a_1a_2)$

NB. Composition of permutations is applied from right to left.

Problem 3. Prove that any permutation $\sigma \in S_n$ can be factored as a product of not necessarily independent cycles of length 2 (cycles of length 2 are called *transpositions*).

Problem 4. Figure out (with a proof) whether the following statement is true of false.

If $\sigma \in S_n$ is a cycle, then σ^2 is also a cycle.

Problem 5. From the class we know that possible orders of elements in the group S_4 are 1, 2, 3, 4. Find the number of elements of order *d* for every $d \in \{1, 2, 3, 4\}$.

Hint: your counts should add up to $|S_4| = 4! = 24$