Homework 8

Due: Wednesday, November 11

Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Find all possible orders of elements in the alternating group A_5 (group of even permutations of five elements).

Problem 2. Let (1, 2) be a transposition, and $\sigma \in S_n$ any permutation. Prove that the product

 $\sigma(1,2)\sigma^{-1}$

is the transposition swapping $\sigma(1)$ and $\sigma(2)$.

Problem 3. Let $H \subset S_n$ be a *normal* subgroup containing transposition (1, 2). Prove that H must coincide with the whole S_n .

Hint: use the previous problem and the fact that *H* is normal to show that *H* must contain *all* transpositions

Problem 4. Twelve volumes of Encyclopedia Britannica are on the shelve in the order 12, 1, 2, 3, ..., 11. George is allowed to swap adjacent pairs of volumes, i.e., change ..., *a*, *b*, *c*, *d*, ... to ..., *c*, *d*, *a*, *b*,

a) Prove that George will be able to obtain only the permutations of $\{1, 2, 3, ..., 12\}$ that are of the same parity as the initial permutation.

b) Prove that George will never be able to put all the volumes in the correct order 1, 2, 3, ..., 12.

Problem 5. Prove that

 $N = \{ id, (12)(34), (13)(24), (14)(23) \} \subset S_4$

is a subgroup.

*Optional question: show that *N* is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.