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Lecture 10

Order of an element

Recall that the order of an element a in group (G,∗) is the smallest positive integer such that ad = e. In this case
element a generates cyclic subgroup of size d:

〈a〉 = {e,a,a2, . . . , ad−1}.

Proposition 1

Element b = ak ∈ 〈a〉n can be taken as a generator of 〈a〉n if and only if gcd(n,k) = 1.

Proof. First we note that a has order exactly n.
Element b generates the whole group, if and only if a ∈ 〈b〉, i.e., for some l > 0 we have

bl = alk = a.

But this happens if and only if lk ≡ 1 mod n or equivalently alk−1 = e.
This happens if and only if element k ∈ Zn is multiplicatively invertible (is a unit), which is equivalent to
gcd(n,k) = 1.

Example 1

We saw that Z×9 is a cyclic group with generator a = 2 and is of order ϕ(9) = 6. By the above example,
all other generators are 2k , where k is any number coprime with 6, i.e., k = 1 and k = 5:

21 = 2,25 = 5

With a slight modification to the above argument, we can answer the second question

Proposition 2

Consider any element b = ak ∈ 〈a〉n. Then

〈b〉 = 〈agcd(n,k)〉n/gcd(n,k) = {a0, agcd(n,k), a2gcd(n,k), . . . , an−gcd(n,k)},

i.e., ak generates a cyclic subgroup of order n/gcd(n,k) which can also be generated by agcd(n,k).

Problem 1: Every cyclic subgroup is abelian.

Proposition 3

Every subgroup of a cyclic group is cyclic.

Proof. We have already proved it for infinite cyclic group (see the statement about subgroups of Z). Now
let H ⊂ 〈a〉n. Choose an element ak ∈H with the smallest possible k > 0.
It is an exercise to check that H = 〈ak〉.

Problem 2: Let S3 be a group of symmetries of an equilateral triangle. Find orders of all its elements.

Isomorphisms

We see that cyclic group of order d looks very similar to the group (Zd ,+). In some sense this is the same
group, and to make this claim precise we introduce a new notion.
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Definition 1: Isomorphism

A group isomorphism between groups (G,∗) and (G′ ,∗′) is a bijection

ϕ : G→ G′

which respects operations ∗ and ∗′ , i.e., for any x,y ∈ G we have

ϕ(x ∗ y) = ϕ(x) ∗′ ϕ(y).

Problem 3: Prove that if ϕ : G→ G′ is an isomorphism, then ϕ−1 : G′→ G is also an isomorphism.

Proposition 4

Let ϕ : G→ G′ be an isomorphism. Then ϕ−1 : G′→ G is also an isomorphism.

Example 2

1. The exponential function defines an isomorphism (R,+)→ (R>0, ·).

2. We have encountered at least two groups of order two, namely (Z2,+) and ({1,−1}, ·). The map

Z2→ {1,−1}

sending 0 to 1 and 1 to −1 gives an isomorphism between the two.

Definition 2

Two groups G and G′ are said to be isomorphic if there exists an isomorphism ϕ : G→ G′ .

Isomorphic groups have exactly the same properties (same order etc.), so we can identify them to each other.

Claim. Being isomorphic is an equivalence relation on the set of all groups.

Proposition 5

A cyclic group of infinite order is isomorphic to Z.

Proposition 6

Let n > 2 be an integer. Any cyclic group of order n is isomorphic to Zn.

Definition 3: Product of groups

If (G,∗) and (H,∗) are two groups, we can define a group operation on the produce G ×H by setting for
any (g1,h1) ∈ G ×H and (g2,h2) ∈ G ×H

(g1,h1)× (g2,h2) := (g1 ∗ g2,h1 ∗ h2).

Example 3

The simplest example of this construction is the group Z2×Z2 with respect to addition in both factors.
It has elements

{(0,0), (0,1), (1,0), (1,1)}

and the operation on the above pairs ia the coordinate-wise addition modulo 2.
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Example 4

Let us now give some examples of how to prove that two groups are not isomorphic.

1. The groups Z4 and Z2×Z2 are not isomorphic since, the first one being cyclic of order 4, whereas
the second one has only elements of order at most 2.

2. The groups Q and Z are not isomorphic. Indeed, assume we have an isomorphism ϕ : Z→Q and
denote ϕ(1) = a. By surjectivity of ϕ, there exists an integer n such that ϕ(n) = a

2 . But since ϕ is
a homomorphism, we must have ϕ(2n) = 2ϕ(n) = a, so that by injectivity of ϕ, 2n = 1, which is a
contradiction. Note that here the argument relied on the fact that in the group Q one can divide
by 2 indefinitely, whereas this is not possible in Z.

Another way of seeing this is by remarking that for all n ∈ Z, we have ϕ(n) = nϕ(1). This means
that the denominator of the rational number nϕ(1) is at most the denominator of ϕ(1). Since the
denominators of elements of Q can be arbitrarily large, this means that ϕ cannot be surjective.

3. The additive group (Q,+) is not isomorphic to the multiplicative group (Q×, ·). Indeed, let ϕ :
(Q×, ·)→ (Q,+) be an isomorphism. Put ϕ(2) = a. By surjectivity of ϕ, there is a rational number x
such that ϕ(x) = a

2 . Then ϕ(x ·x) = ϕ(x)+ϕ(x) = a, so by injectivity, x2 = 2. This is impossible since
there is no rational number x satisfying this. This argument is similar to the one in the previous
example: here we used that dividing by 2 in the additive setting corresponded to taking square
roots in the multiplicative setting, which is not always possible in the rationals.
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