Lecture 12

Reference: Judson, Chapter 6

Cosets and Lagrange's theorem

Left and right cosets

Recall the definition

Definition 1

Let G be a group and H a subgroup of G. A *left coset* of H is a subset of G of the form

 $gH=\{gh,\ h\in H\}.$

In the same way, we can define **right** cosets to be $Hg = \{hg, h \in H\}$ for $g \in G$.

Proposition 1

Consider the relation

 $a \sim b$ if there exists $h \in H$ such that a = bh.

Equivalently, $a \sim b$ if and only if $b^{-1}a \in H$ and if and only if $a \in bH$. It is an equivalence relation, and the left cosets of H are its equivalence classes.

Proof. To verify that equivalence classes modulo relation \sim coincide with left cosets we need to verify two claims:

1. If $a \sim b$, i.e., $a^{-1}b \in H$, and a belongs to a coset gH, then b belongs the same coset. Indeed, since $a \sim b$, we have that there exists $h \in H$ such that a = bh. On the other hand, since $a \in gH$, there exists h_1 such that $a = gh_1$. Substituting a, we find

$$bh = gh_1 \iff b = g(h_1h^{-1})$$

Thus b belongs to the same coset gH, as claimed.

2. If *a*, *b* belong to a left coset *gH*, then we can find two elements $h_a, h_b \in H$ such that

 $gh_a = a \quad gh_b = b$

But then $a^{-1}b = (h_a^{-1}g^{-1})(gh_b) = h_a^{-1}h_b \in H$. Thus by definition $a \sim b$.

By the previous remark, we have the following:

Proposition 2

Let H be a subgroup of a group G. Then G is the disjoint union of the left cosets of H. In other words, the left cosets of H form a partition of G.

Remark 1

This property is also true for right cosets. This can be seen by introducing another equivalence relation \sim' given by $a \sim' b$ if and only if there exists $h \in H$ such that a = hb (or, equivalently, $ab^{-1} \in H$, or $a \in Hb$). Its equivalence classes are the right cosets. Note moreover that $a \sim b$ if and only if $a^{-1} \sim' b^{-1}$, so that aH = bH if and only if $Ha^{-1} = Hb^{-1}$.

There is a map

 $i: \{\text{left cosets of } H\} \rightarrow \{\text{right cosets of } H\}$

given by $i: aH \mapsto Ha^{-1}$, well-defined and injective thanks to the previous remark. It is also surjective since for all $b \in G$, $\alpha(b^{-1}H) = Hb$. We may conclude the following:

Proposition 3

Let G be a group and H a subgroup of G. Then the number of left cosets of H is equal to the number of right cosets.

Index of a subgroup

Definition 2

Let *H* be a subgroup of a group *G*. The index of *H* in *G*, denoted by [G:H], is defined to be the number of distinct left cosets of *H* in *G*. If this number is infinite, then we write $[G:H] = \infty$.

Remark 2

By proposition 3, this is the same as the number of distinct right cosets.

Example 1

The index of $\{0, 3\}$ in \mathbb{Z}_6 is 3. **Question**: what is the index of $\langle k \rangle$ for $k \in \mathbb{Z}_n$.

Example 2

Consider $G = \mathbb{Z}$ and $H = n\mathbb{Z}$. Observe that in this case, the equivalence relation ~ is exactly the relation of congruence modulo *n*, the cosets being exactly

$$n\mathbb{Z}$$
, $1+n\mathbb{Z}$,..., $(n-1)+n\mathbb{Z}$.

Thus, $[\mathbb{Z} : n\mathbb{Z}] = n$. In particular, index [G : H] might be finite even if *G* and *H* are infinite.

Note that in general, [G : H] may be infinite. For example, a left coset of the trivial group in a group *G* is of the form $\{a\}$ for $a \in G$. Thus, if *G* is infinite, $[G : \{e\}]$ is infinite.

Remark 3

If *H* is a subgroup of index 1 in *G*, then H = G.

Example 3: Subgroups of index 2

An important special case is that of subgroups of index 2. Let *G* be a group and *H* a subgroup of *G* such that [G:H] = 2. This means that we have two left cosets, one of them being *H* itself, and the other being $G \setminus H$, which should be the equivalence class of all $g \in G \setminus H$, so that *G* is the disjoint union $G = H \sqcup gH$ for any $g \in G \setminus H$. In exactly the same manner, we have two right cosets, one of them being *H*, and the other being given by Hg where *g* is any element of $G \setminus H$. Therefore, for all $g \in G \setminus H$, we have

$$gH = G \setminus H = Hg.$$

On the other hand, for all $g \in H$, we have

$$gH = H = Hg$$

Therefore, we observe that in this case, the right cosets and the left cosets of H are the same.

Problem 1: For the cyclic subgroups H_1 and H_2 of $(S_3, *)$ (the groups of symmetries of a triangle) generated by the rotation and the reflection respectively, find its cosets and index.

Lagrange's theorem

Proposition 4

Any two cosets *aH* and *bH* have the same number of elements.

Proof. We construct a bijection between aH and bH, which will prove that these two sets have the same number of elements.

Define a map

 $f: aH \to bH$

by sending each element $g = ah \in aH$ to $bh = (ba^{-1})g \in bH$. This map is bijection, since it admits an inverse (given by an analogous left multiplication with ab^{-1}).

Observing that the group *G* therefore is partitioned into [G:H] subsets which all have |H| elements, we have the following important *counting formula*:

Theorem 1: Counting formula

Let G be a finite group and H a subgroup of G. Then

|G| = [G:H]|H|.

This formula makes sense even if some of |G|, [G : H] and |H| are infinite. An important consequence of this is Lagrange's theorem:

Theorem 2: Lagrange

Let G be a finite group and H a subgroup of G. Then the size of H divides the size of G.

Proof. By counting formula we have

$$|G| = [G:H]|H|$$

Since [G:H] is an integer, it implies that |H| divides |G|.

Corollary 1

Let G be a finite group. The order of any element of G divides the size of G.

Proof. Any element $a \in G$ generates a cyclic subgroup $\langle a \rangle \subset G$ of size ord(a). By the previous theorem, ord(a) divides |G|.

Corollary 2

Let *G* be a finite group with order a prime number *p*. Then *G* is cyclic, and any $a \in G$ different from the identity element is a generator.

Remark 4

Corollary 2 implies that up to isomorphism, there is only one group of order a prime *p*, namely $\mathbb{Z}/p\mathbb{Z}$. Note that we already knew that all elements of $\mathbb{Z}/p\mathbb{Z}$ except 0 are generators.