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Lecture 12
Reference: Judson, Chapter 6

Cosets and Lagrange’s theorem

Left and right cosets

Recall the definition

Definition 1

Let G be a group and H a subgroup of G. A left coset of H is a subset of G of the form

gH = {gh, h ∈H}.

In the same way, we can define right cosets to be Hg = {hg, h ∈H} for g ∈ G.

Proposition 1

Consider the relation
a ∼ b if there exists h ∈H such that a = bh.

Equivalently, a ∼ b if and only if b−1a ∈ H and if and only if a ∈ bH . It is an equivalence relation, and
the left cosets of H are its equivalence classes.

Proof. To verify that equivalence classes modulo relation ∼ coincide with left cosets we need to verify two
claims:

1. If a ∼ b, i.e., a−1b ∈H , and a belongs to a coset gH , then b belongs the same coset. Indeed, since a ∼ b,
we have that there exists h ∈H such that a = bh. On the other hand, since a ∈ gH , there exists h1 such
that a = gh1. Substituting a, we find

bh = gh1⇐⇒ b = g(h1h
−1)

Thus b belongs to the same coset gH , as claimed.

2. If a,b belong to a left coset gH , then we can find two elements ha,hb ∈H such that

gha = a ghb = b

But then a−1b = (h−1
a g
−1)(ghb) = h−1

a hb ∈H . Thus by definition a ∼ b.

By the previous remark, we have the following:

Proposition 2

Let H be a subgroup of a group G. Then G is the disjoint union of the left cosets of H . In other words,
the left cosets of H form a partition of G.

Remark 1

This property is also true for right cosets. This can be seen by introducing another equivalence relation
∼′ given by a ∼′ b if and only if there exists h ∈H such that a = hb (or, equivalently, ab−1 ∈H , or a ∈Hb).
Its equivalence classes are the right cosets. Note moreover that a ∼ b if and only if a−1 ∼′ b−1, so that
aH = bH if and only if Ha−1 =Hb−1.

There is a map
i : {left cosets of H} → {right cosets of H}

given by i : aH 7→Ha−1, well-defined and injective thanks to the previous remark. It is also surjective since for
all b ∈ G, α(b−1H) =Hb. We may conclude the following:
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Proposition 3

Let G be a group and H a subgroup of G. Then the number of left cosets of H is equal to the number of
right cosets.

Index of a subgroup

Definition 2

Let H be a subgroup of a group G. The index of H in G, denoted by [G :H], is defined to be the number
of distinct left cosets of H in G. If this number is infinite, then we write [G :H] =∞.

Remark 2

By proposition 3, this is the same as the number of distinct right cosets.

Example 1

The index of {0,3} in Z6 is 3.
Question: what is the index of 〈k〉 for k ∈Zn.

Example 2

Consider G = Z and H = nZ. Observe that in this case, the equivalence relation ∼ is exactly the relation
of congruence modulo n, the cosets being exactly

nZ, 1 +nZ, . . . , (n− 1) +nZ.

Thus, [Z : nZ] = n.
In particular, index [G :H] might be finite even if G and H are infinite.

Note that in general, [G :H] may be infinite. For example, a left coset of the trivial group in a group G is of the
form {a} for a ∈ G. Thus, if G is infinite, [G : {e}] is infinite.

Remark 3

If H is a subgroup of index 1 in G, then H = G.

Example 3: Subgroups of index 2

An important special case is that of subgroups of index 2. Let G be a group andH a subgroup of G such
that [G :H] = 2. This means that we have two left cosets, one of them beingH itself, and the other being
G \H , which should be the equivalence class of all g ∈ G \H , so that G is the disjoint union G =H t gH
for any g ∈ G \H . In exactly the same manner, we have two right cosets, one of them being H , and the
other being given by Hg where g is any element of G \H . Therefore, for all g ∈ G \H , we have

gH = G \H =Hg.

On the other hand, for all g ∈H , we have

gH =H =Hg.

Therefore, we observe that in this case, the right cosets and the left cosets of H are the same.

Problem 1: For the cyclic subgroups H1 and H2 of (S3,∗) (the groups of symmetries of a triangle) gen-
erated by the rotation and the reflection respectively, find its cosets and index.
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Lagrange’s theorem

Proposition 4

Any two cosets aH and bH have the same number of elements.

Proof. We construct a bijection between aH and bH , which will prove that these two sets have the same
number of elements.
Define a map

f : aH → bH

by sending each element g = ah ∈ aH to bh = (ba−1)g ∈ bH . This map is bijection, since it admits an inverse
(given by an analogous left multiplication with ab−1).

Observing that the group G therefore is partitioned into [G : H] subsets which all have |H | elements, we have
the following important counting formula:

Theorem 1: Counting formula

Let G be a finite group and H a subgroup of G. Then

|G| = [G :H]|H |.

This formula makes sense even if some of |G|, [G :H] and |H | are infinite. An important consequence of this is
Lagrange’s theorem:

Theorem 2: Lagrange

Let G be a finite group and H a subgroup of G. Then the size of H divides the size of G.

Proof. By counting formula we have
|G| = [G :H]|H |

Since [G :H] is an integer, it implies that |H | divides |G|.

Corollary 1

Let G be a finite group. The order of any element of G divides the size of G.

Proof. Any element a ∈ G generates a cyclic subgroup 〈a〉 ⊂ G of size ord(a). By the previous theorem, ord(a)
divides |G|.

Corollary 2

Let G be a finite group with order a prime number p. Then G is cyclic, and any a ∈ G different from the
identity element is a generator.

Remark 4

Corollary 2 implies that up to isomorphism, there is only one group of order a prime p, namely Z/pZ.
Note that we already knew that all elements of Z/pZ except 0 are generators.

3


