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Lecture 13
Reference: Judson, Chapter 5

Permutation group

Let X be a finite set. For concreteness rename its elements so that

X = {1,2, . . . ,n}.

Recall that B(X) denotes the set of all bijections (or shuffles of X)

f : X→ X.

Example 1: n = 3

Below are diagrams of two bijections f1 : X→ X and f2 : X→ X for X = {1,2,3}.

f1 :

X X

.1

.2

.3

. 1

. 2

. 3

f2 :

X X

.1

.2

.3

. 1

. 2

. 3

Given two maps f1 : X → X and f2 : X → X we can compose them in any order we like. In terms of mapping
diagrams as above this amounts to stacking the together. For instance f1 ◦ f2 (first f2, then f1 — right to left, as
usual with compositions) has the mapping diagram as follows

f1 ◦ f2 :

X X X

.1

.2

.3

. 1

. 2

. 3

. 1

. 2

. 3

f1 ◦ f2 :
.1
.2
.3

. 1

. 2

. 3

Problem 1: Find the mapping diagram of f2 ◦ f1 and verify that f2 ◦ f1 , f1 ◦ f2.

The set of bijections B(X) together with the composition operation form a group. Traditionally it is denoted
by Sn, where n = |X | is the cardinality of X, and its elements (bijections of X) are denoted by Greek letters
(σ,τ,µ, . . . ).

Definition 1: Permutation group

Permutation group Sn of the set X = {1,2, . . . ,n} is the set of all bijections

σ : {1,2, . . . ,n} → {1,2, . . .n}

endowed with the composition operation.
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Specifying elements of Sn.

The most straightforward way to specify an element σ of Sn is to encode all the images σ (i) of individual
elements 1 6 i 6 n. It is convenient to store this data in a table of size 2×n:

σ =
(

1 2 . . . n
σ (1) σ (2) . . . σ (n)

)
For example map f2 from above would be

f2 =
(
1 2 3
2 3 1

)

Problem 2: Consider a permutation σ given by a table(
1 2 . . . n
i1 i2 . . . in

)
.

Prove that the table of σ−1 is obtained from(
i1 i2 . . . in
1 2 . . . n

)
by reordering its columns according to the top values in the first row.

The neutral element of Sn is given by the “trivial” table

id =
(
1 2 . . . n
1 2 . . . n

)
.

Proposition 1

|Sn| = n!, where n! = 1 · 2 · 3 · · · · ·n.

Proof. To specify the number of bijections σ : {1,2, . . . ,n} → {1,2, . . . ,n} we need to

1. set σ (1) — we have n choices for it (any element of {1,2, . . . ,n})

2. set σ (2) — we have (n− 1) choices left (any element of {1,2, . . . ,n} except for σ (1), since σ is bijective)

3. . . .

n. set σ (n) — we have exactly one choice left (the unique element other that σ (1),σ (2), . . . ,σ (n− 1)).

Overall this gives n · (n− 1) · · · · · 1 = n! options.

Cycles

Definition 2: Cycle

Permutation σ ∈ Sn is called as cycle of length k > 2, if there exist k distinct elements i1, . . . , ik ∈ {1,2, . . .n}
such that σ cyclically rotates i1, . . . , ik :

i1
σ−→ i2

σ−→ i3
σ−→ . . .

σ−→ ik
σ−→ i1,

and all the remaining elements are kept in place.

For σ as above, we will use a shorthand
σ = (i1, i2, . . . ik).

This presentation is clearly not uniques, as we can also write the same σ as

σ = (i2, i3, . . . ik , i1).
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Example 2

Element σ ∈ S3

σ =
(
1 2 3
3 2 1

)
is a cycle of length 2, as it cyclically permutes 1 and 3.
On the contrary element τ ∈ S4

τ =
(
1 2 3 4
3 4 1 2

)
is not a cycle, since it simultaneously swaps 1 with 3 and 2 with 4.

Definition 3: Independent cycles

We say that cycles σ = (i1, . . . , ik) and µ = (j1, . . . , jl) are independent if

{i1, . . . ik} ∩ {j1, . . . , jk} = ∅.

i.e., the sets of elements, which they cyclically permute, do not intersect.

The following proposition is obvious.

Proposition 2

If cycles σ and µ are independent, then they commute:

σ ◦µ = µ ◦ σ.

Theorem 1: Factorization into independent cycles

If σ ∈ Sn is any permutation, then there exist a collection of mutually independent cycles µ1, . . . ,µl ∈ Sn
such that

σ = µ1 ◦µ2 · · · ◦µl .

Proof. Start with any element a in {1,2, . . . ,n} which is not fixed by σ . Consider iterations

a 7→ σ (a) 7→ σ2(a) 7→ . . .σ k(a) 7→ . . . .

At some step l1 we again encounter a. Denote the corresponding cycle as

µ1 = (a,σ (a), . . . ,σ l1−1(a))

Then µ1 and σ act in the same way on all the elements {a,σ (a), . . . ,σ l1−1(a)} (equivalently µ−1
1 ◦ σ fix these

elements).
Pick another element b ∈ {1, . . . ,n} not fixed by µ−1

1 ◦ σ , and repeat the procedure, identifying new cycle µ2.
This cycle will be independent with µ1, and now µ−1

2 ◦µ
−1
1 ◦ σ fixes even more elements then µ−1

1 ◦ σ .
Iterate this procedure, until the permutation σ is decomposed into a product of independent cycles.

Example 3

Consider

σ =
(
1 2 3 4 5
3 4 5 2 1

)
The following the above procedure we find a factorization

σ = (1,3,5)(2,4).
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Remark 1

Factorization into independent cycles is unique up to a reordering of µi ’s.
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