Lecture 13

Reference: Judson, Chapter 5

Permutation group

Let X be a finite set. For concreteness rename its elements so that

$$
X=\{1,2, \ldots, n\} .
$$

Recall that $\mathcal{B}(X)$ denotes the set of all bijections (or shuffles of X)

$$
f: X \rightarrow X
$$

Example 1: $n=3$

Below are diagrams of two bijections $f_{1}: X \rightarrow X$ and $f_{2}: X \rightarrow X$ for $X=\{1,2,3\}$.

Given two maps $f_{1}: X \rightarrow X$ and $f_{2}: X \rightarrow X$ we can compose them in any order we like. In terms of mapping diagrams as above this amounts to stacking the together. For instance $f_{1} \circ f_{2}$ (first f_{2}, then f_{1} - right to left, as usual with compositions) has the mapping diagram as follows

Problem 1: Find the mapping diagram of $f_{2} \circ f_{1}$ and verify that $f_{2} \circ f_{1} \neq f_{1} \circ f_{2}$.

The set of bijections $\mathcal{B}(X)$ together with the composition operation form a group. Traditionally it is denoted by S_{n}, where $n=|X|$ is the cardinality of X, and its elements (bijections of X) are denoted by Greek letters $(\sigma, \tau, \mu, \ldots)$.

Definition 1: Permutation group

Permutation group S_{n} of the set $X=\{1,2, \ldots, n\}$ is the set of all bijections

$$
\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots n\}
$$

endowed with the composition operation.

Specifying elements of S_{n}.

The most straightforward way to specify an element σ of S_{n} is to encode all the images $\sigma(i)$ of individual elements $1 \leqslant i \leqslant n$. It is convenient to store this data in a table of size $2 \times n$:

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n)
\end{array}\right)
$$

For example map f_{2} from above would be

$$
f_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

Problem 2: Consider a permutation σ given by a table

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
i_{1} & i_{2} & \ldots & i_{n}
\end{array}\right)
$$

Prove that the table of σ^{-1} is obtained from

$$
\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{n} \\
1 & 2 & \ldots & n
\end{array}\right)
$$

by reordering its columns according to the top values in the first row.

The neutral element of S_{n} is given by the "trivial" table

$$
i d=\left(\begin{array}{llll}
1 & 2 & \ldots & n \\
1 & 2 & \ldots & n
\end{array}\right)
$$

Proposition 1

$\left|S_{n}\right|=n!$, where $n!=1 \cdot 2 \cdot 3 \cdots \cdots n$.
Proof. To specify the number of bijections $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ we need to

1. set $\sigma(1)$ - we have n choices for it (any element of $\{1,2, \ldots, n\}$)
2. set $\sigma(2)$ — we have $(n-1)$ choices left (any element of $\{1,2, \ldots, n\}$ except for $\sigma(1)$, since σ is bijective)
3. ...
n. set $\sigma(n)$ — we have exactly one choice left (the unique element other that $\sigma(1), \sigma(2), \ldots, \sigma(n-1)$).

Overall this gives $n \cdot(n-1) \cdots \cdots 1=n$! options.

Cycles

Definition 2: Cycle

Permutation $\sigma \in S_{n}$ is called as cycle of length $k \geqslant 2$, if there exist k distinct elements $i_{1}, \ldots, i_{k} \in\{1,2, \ldots n\}$ such that σ cyclically rotates i_{1}, \ldots, i_{k} :

$$
i_{1} \xrightarrow{\sigma} i_{2} \xrightarrow{\sigma} i_{3} \xrightarrow{\sigma} \ldots \xrightarrow{\sigma} i_{k} \xrightarrow{\sigma} i_{1},
$$

and all the remaining elements are kept in place.

For σ as above, we will use a shorthand

$$
\sigma=\left(i_{1}, i_{2}, \ldots i_{k}\right)
$$

This presentation is clearly not uniques, as we can also write the same σ as

$$
\sigma=\left(i_{2}, i_{3}, \ldots i_{k}, i_{1}\right)
$$

Example 2

Element $\sigma \in S_{3}$

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

is a cycle of length 2 , as it cyclically permutes 1 and 3 .
On the contrary element $\tau \in S_{4}$

$$
\tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)
$$

is not a cycle, since it simultaneously swaps 1 with 3 and 2 with 4 .

Definition 3: Independent cycles

We say that cycles $\sigma=\left(i_{1}, \ldots, i_{k}\right)$ and $\mu=\left(j_{1}, \ldots, j_{l}\right)$ are independent if

$$
\left\{i_{1}, \ldots i_{k}\right\} \cap\left\{j_{1}, \ldots, j_{k}\right\}=\varnothing
$$

i.e., the sets of elements, which they cyclically permute, do not intersect.

The following proposition is obvious.

Proposition 2

If cycles σ and μ are independent, then they commute:

$$
\sigma \circ \mu=\mu \circ \sigma
$$

Theorem 1: Factorization into independent cycles

If $\sigma \in S_{n}$ is any permutation, then there exist a collection of mutually independent cycles $\mu_{1}, \ldots, \mu_{l} \in S_{n}$ such that

$$
\sigma=\mu_{1} \circ \mu_{2} \cdots \circ \mu_{l} .
$$

Proof. Start with any element a in $\{1,2, \ldots, n\}$ which is not fixed by σ. Consider iterations

$$
a \mapsto \sigma(a) \mapsto \sigma^{2}(a) \mapsto \ldots \sigma^{k}(a) \mapsto \ldots
$$

At some step l_{1} we again encounter a. Denote the corresponding cycle as

$$
\mu_{1}=\left(a, \sigma(a), \ldots, \sigma^{l_{1}-1}(a)\right)
$$

Then μ_{1} and σ act in the same way on all the elements $\left\{a, \sigma(a), \ldots, \sigma^{l_{1}-1}(a)\right\}$ (equivalently $\mu_{1}^{-1} \circ \sigma$ fix these elements).
Pick another element $b \in\{1, \ldots, n\}$ not fixed by $\mu_{1}^{-1} \circ \sigma$, and repeat the procedure, identifying new cycle μ_{2}. This cycle will be independent with μ_{1}, and now $\mu_{2}^{-1} \circ \mu_{1}^{-1} \circ \sigma$ fixes even more elements then $\mu_{1}^{-1} \circ \sigma$.
Iterate this procedure, until the permutation σ is decomposed into a product of independent cycles.

Example 3

Consider

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 2 & 1
\end{array}\right)
$$

The following the above procedure we find a factorization

$$
\sigma=(1,3,5)(2,4)
$$

Remark 1

Factorization into independent cycles is unique up to a reordering of μ_{i} 's.

