Lecture 13

Reference: Judson, Chapter 5

Permutation group

Let *X* be a finite set. For concreteness rename its elements so that

$$X = \{1, 2, \ldots, n\}.$$

Recall that $\mathcal{B}(X)$ denotes the set of all bijections (or *shuffles* of *X*)

$$f: X \to X.$$

Example 1: *n* = 3

Below are diagrams of two bijections $f_1 : X \to X$ and $f_2 : X \to X$ for $X = \{1, 2, 3\}$.

Given two maps $f_1: X \to X$ and $f_2: X \to X$ we can compose them in any order we like. In terms of mapping diagrams as above this amounts to *stacking* the together. For instance $f_1 \circ f_2$ (first f_2 , then f_1 — right to left, as usual with compositions) has the mapping diagram as follows

Problem 1: Find the mapping diagram of $f_2 \circ f_1$ and verify that $f_2 \circ f_1 \neq f_1 \circ f_2$.

The set of bijections $\mathcal{B}(X)$ together with the composition operation form a group. Traditionally it is denoted by S_n , where n = |X| is the cardinality of X, and its elements (bijections of X) are denoted by Greek letters $(\sigma, \tau, \mu, ...)$.

Definition 1: Permutation group

Permutation group S_n of the set $X = \{1, 2, ..., n\}$ is the set of all bijections

 $\sigma: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$

endowed with the composition operation.

Specifying elements of *S_n***.**

The most straightforward way to specify an element σ of S_n is to encode all the images $\sigma(i)$ of individual elements $1 \le i \le n$. It is convenient to store this data in a table of size $2 \times n$:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

For example map f_2 from above would be

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Problem 2: Consider a permutation σ given by a table

Prove that the table of σ^{-1} is obtained from

$$\begin{pmatrix} i_1 & i_2 & \dots & i_n \\ 1 & 2 & \dots & n \end{pmatrix}$$

by reordering its columns according to the top values in the first row.

The neutral element of S_n is given by the "trivial" table

$$id = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}.$$

Proposition 1

 $|S_n| = n!$, where $n! = 1 \cdot 2 \cdot 3 \cdots n$.

Proof. To specify the number of bijections σ : $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ we need to

1. set $\sigma(1)$ — we have *n* choices for it (any element of $\{1, 2, ..., n\}$)

set σ(2) — we have (n-1) choices left (any element of {1, 2,..., n} except for σ(1), since σ is bijective)
...

n. set $\sigma(n)$ — we have exactly one choice left (the unique element other that $\sigma(1), \sigma(2), \dots, \sigma(n-1)$).

Overall this gives $n \cdot (n-1) \cdots 1 = n!$ options.

Cycles

Definition 2: Cycle

Permutation $\sigma \in S_n$ is called as cycle of length $k \ge 2$, if there exist k distinct elements $i_1, ..., i_k \in \{1, 2, ..., n\}$ such that σ cyclically rotates $i_1, ..., i_k$:

$$i_1 \xrightarrow{\sigma} i_2 \xrightarrow{\sigma} i_3 \xrightarrow{\sigma} \dots \xrightarrow{\sigma} i_k \xrightarrow{\sigma} i_1,$$

and all the remaining elements are kept in place.

For σ as above, we will use a shorthand

$$\sigma = (i_1, i_2, \dots i_k).$$

This presentation is clearly not uniques, as we can also write the same σ as

$$\sigma = (i_2, i_3, \dots i_k, i_1).$$

Fall 2020

Example 2

Element $\sigma \in S_3$

 $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$

is a cycle of length 2, as it cyclically permutes 1 and 3. On the contrary element $\tau \in S_4$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

is not a cycle, since it *simultaneously* swaps 1 with 3 and 2 with 4.

Definition 3: Independent cycles

We say that cycles $\sigma = (i_1, ..., i_k)$ and $\mu = (j_1, ..., j_l)$ are *independent* if

$$\{i_1,\ldots,i_k\}\cap\{j_1,\ldots,j_k\}=\emptyset.$$

i.e., the sets of elements, which they cyclically permute, do not intersect.

The following proposition is obvious.

Proposition 2

If cycles σ and μ are independent, then they commute:

 $\sigma \circ \mu = \mu \circ \sigma.$

Theorem 1: Factorization into independent cycles

If $\sigma \in S_n$ is any permutation, then there exist a collection of mutually independent cycles $\mu_1, \ldots, \mu_l \in S_n$ such that

$$\sigma = \mu_1 \circ \mu_2 \cdots \circ \mu_l.$$

Proof. Start with any element *a* in $\{1, 2, ..., n\}$ which is not fixed by σ . Consider iterations

$$a \mapsto \sigma(a) \mapsto \sigma^2(a) \mapsto \dots \sigma^k(a) \mapsto \dots$$

At some step l_1 we again encounter *a*. Denote the corresponding cycle as

$$\mu_1 = (a, \sigma(a), \dots, \sigma^{l_1 - 1}(a))$$

Then μ_1 and σ act in the same way on all the elements $\{a, \sigma(a), \dots, \sigma^{l_1-1}(a)\}$ (equivalently $\mu_1^{-1} \circ \sigma$ fix these elements).

Pick another element $b \in \{1, ..., n\}$ not fixed by $\mu_1^{-1} \circ \sigma$, and repeat the procedure, identifying new cycle μ_2 . This cycle will be independent with μ_1 , and now $\mu_2^{-1} \circ \mu_1^{-1} \circ \sigma$ fixes even more elements then $\mu_1^{-1} \circ \sigma$. Iterate this procedure, until the permutation σ is decomposed into a product of independent cycles.

Example 3

Consider

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$

The following the above procedure we find a factorization

 $\sigma = (1,3,5)(2,4).$

Remark 1

Factorization into independent cycles is unique up to a reordering of μ_i 's.