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Lecture 14
Reference: Judson, Chapter 5

Permutation group

Cycles factorization

Recall a definition.

Definition 1: Independent cycles

We say that cycles σ = (i1, . . . , ik) and µ = (j1, . . . , jl) are independent if

{i1, . . . ik} ∩ {j1, . . . , jk} = ∅.

i.e., the sets of elements, which they cyclically permute, do not intersect.

The following proposition is obvious.

Proposition 1

If cycles σ and µ are independent, then they commute:

σ ◦µ = µ ◦ σ.

Remark 1

If cycles are not independent, then might not commute, for example for cycles of length two (1,2) and
(2,3) in S3 we have (remember composing from right to left!)

(1,2)(2,3) = (3,1,2)

while
(2,3)(1,2) = (2,1,3)

are two different cycles of length 3.

Theorem 1: Factorization into independent cycles

If σ ∈ Sn is any permutation, then there exist a collection of mutually independent cycles µ1, . . . ,µl ∈ Sn
such that

σ = µ1 ◦µ2 · · · ◦µs.

Proof. Start with any element a in {1,2, . . . ,n} which is not fixed by σ . Consider iterations

a 7→ σ (a) 7→ σ2(a) 7→ . . .σ k(a) 7→ . . . .

At some step l1 we again encounter a. Denote the corresponding cycle as

µ1 = (a,σ (a), . . . ,σ l1−1(a))

Then µ1 and σ act in the same way on all the elements {a,σ (a), . . . ,σ l1−1(a)} (equivalently µ−1
1 ◦ σ fix these

elements).
Pick another element b ∈ {1, . . . ,n} not fixed by µ−1

1 ◦ σ , and repeat the procedure, identifying new cycle µ2.
This cycle will be independent with µ1, and now µ−1

2 ◦µ
−1
1 ◦ σ fixes even more elements then µ−1

1 ◦ σ .
Iterate this procedure, until we end up with the permutation µ−1

s ◦ · · · ◦ µ−1
2 ◦ µ

−1
1 ◦ σ which fixes all the

elements. It means that this permutation is the identity permutation, thus

σ = µ1 . . .µs

is the factorization of σ into independent cycles, as claimed.
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Example 1

Consider

σ =
(
1 2 3 4 5
3 4 5 2 1

)
Then following the above procedure we find a factorization

σ = (1,3,5)(2,4).

Remark 2

Factorization into independent cycles is unique up to a reordering of µi ’s.

Factorization into independent cycles comes in handy, when we need to find the order of a given permutation.

Theorem 2: Order of permutation

1. If µ is a cycles of length l, then order of µ is l.
2. If σ = µ1 . . .µs is a factorization of σ into independent cycles of length l1, . . . , ls, then the order of σ is
lcm(l1, . . . , ls).

Proof. 1. If µ = (i1, . . . , il) is a cyclic permutation of {i1, . . . , il}, then for any k < l we have

µk(i1) = ik+1 , i1,

thus µk cannot be identity for k < l. On the other hand, after l iterations of µ each of the elements i1, . . . , il
makes a full circle, returning back to its place, thus µl = id.
2. Let L := lcm(l1, . . . , ls). First we check that σL = id. Using the fact (identity * below) that independent
cycles commute with each other, we find:

σL = (µ1 . . .µs)
L ∗= µL1 . . .µ

L
s = id,

where in the last identity we used the fact that each µLi = id as length(µi)
∣∣∣ L.

Finally it remains to check that if d < lcm(l1, . . . , ls), then σd , id. Indeed, since d < Lwe have that one of the
lengths li of µi does not divide d. But then σd does not fix elements of cycles µi and cannot be identity.

Example 2

The order of permutation

σ =
(
1 2 3 4 5
3 4 5 2 1

)
is lcm(3,2) = 6.

Problem 1: Find all possible orders of elements of S7.
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