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Lecture 15
Reference: Judson, Chapter 5

Permutation group

Parity of permutation

On of the key characteristics of a permutation σ ∈ Sn is its parity — it turns out that we can split all permuta-
tion into odd and even, and this splitting satisfies very nice properties.

Let σ ∈ Sn be any permutation. Draw its mapping diagram. We allow arrows to move right/left as long as they
always point into the bottom half-plane (below you can see 6 diagrams for S3 going from top to bottom).

Proposition 1: Parity of intersection count

Given any σ ∈ Sn consider its mapping diagram. Let I be the number of intersection points of arrowsa.
Then for any other drawing of the mapping diagram with J intersection points, we will have

I = J mod 2.

i.e. I and J have the same parity

aTo be pedantic: we assume that arrows are smooth curves, and they are not tangent at the intersection points.

Proof. The reason why parity of I does not change, when we move arrow around is best explained in the
following picture

−→

This picture shows that intersection points appear and disappear in pairs, thus the parity of the number of
the intersection points does not change.

Definition 1: Parity & sign of permutation

Consider any mapping diagram of a permutation σ ∈ Sn. Let I be the number of intersection points of
the arrows. The parity of permutation σ is the parity of I .

Equivalently, we can express the parity of permutation in terms of its sign sgn(σ ) ∈ {−1,+1}. Namely, if
σ is even, we will say that sgn(σ ) = 1, and if σ is odd, we will say sgn(σ ) = −1.
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Example 1

For the above diagrams of permutations in S3 we have numbers of intersections

0 1

2 3

2 3

Thus the permutations in the left column are even and permutations in the right column are odd.

NB 1: Proposition 1 ensures that definition of parity is correct — and the result does not depend on the
presentation of the mapping diagram.

Example 2

1. The identity permutation which fixes all elements id ∈ Sn has a diagram without any intersection
points. Thus id is even.
2. If τ = (a,b) is a transposition (cycle of length 2) swapping elements a and b, then τ is odd. Indeed:
Assume a < b for concreteness. Then, there is a mapping diagram of τ such that the arrow b → a
intersects every arrow c→ c for a < c < b exactly once, and also arrow a→ b intersects every such arrow
c→ c exactly once. This gives 2(b−a−1) intersection points. Plus there is a unique intersection point of
arrows a→ b and b→ a (see example (3,1) above). Overall this gives an odd number of intersections.

The following proposition is the key to understanding signs of permutations.

Proposition 2

Given any permutations σ,τ ∈ Sn we have

sgn(στ) = sgn(σ )sgn(τ)
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Proof. If mapping diagram for τ has I(τ) intersection points, and mapping diagram for σ has I(σ ) intersec-
tion points, then the mapping diagram for στ obtained from “stacking” diagrams for σ and τ together, will
have I(τ) + I(σ ) intersection points. This implies the desired identity.

Remark 1

lternatively, you can think about the above claim as follows:

product of even permutations is even

product of odd permutations is even

product of an odd and an even permutations (in any order) is odd

Example 3

ycle µ = (a1, . . . , ak) of length k can be factored into a product of (k −1) transpositions (Problem #2 from
Homework #7). Let us call these transpositions τi . Therefore

sgn(µ) = sgn(τ1) . . .sgn(τk−1) = (−1)k−1.

Thus µ is even if k is odd, and vice versa µ is odd if k is even.

Problem 1: Let us think of S4 as the group of symmetries of a tetrahedron. Then each rigid motion of a
tetrahedron can be classified as odd or even, according to the parity of the corresponding permutation.
Give a geometric characterization distinguishing the odd rigid motions from the even.

Example 4

Consider permutation

σ =
(
1 2 3 4 5 6
3 4 1 6 2 5

)
.

Of course we could draw its diagram and try to find its parity by intersection points count. But a much
more efficient approach relies on Proposition 2 and the factorization of σ into independent cycles:

First we factorize σ into cycles
σ = (1,3)(2,4,6,5)

Both cycles (1,3) and (2,4,6,5) are of even length, thus they have odd parity by the previous example.
Therefore σ as a product of two odd permutations is even itself.

Problem 2: Let An ⊂ Sn be the subset consisting of all even permutations. Prove that An is a subgroup.
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