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Lecture 15

Reference: Judson, Chapter 5

Permutation group

Parity of permutation
On of the key characteristics of a permutation o € S, is its parity — it turns out that we can split all permuta-
tion into odd and even, and this splitting satisfies very nice properties.

Let 0 € S, be any permutation. Draw its mapping diagram. We allow arrows to move right/left as long as they
always point into the bottom half-plane (below you can see 6 diagrams for S; going from top to bottom).

Proposition 1: Parity of intersection count

Given any o € S, consider its mapping diagram. Let I be the number of intersection points of arrows®.
Then for any other drawing of the mapping diagram with ] intersection points, we will have

I=] mod 2.

i.e. I and J have the same parity

?To be pedantic: we assume that arrows are smooth curves, and they are not tangent at the intersection points.

Proof. The reason why parity of I does not change, when we move arrow around is best explained in the
following picture

=
N

This picture shows that intersection points appear and disappear in pairs, thus the parity of the number of
the intersection points does not change. O

Definition 1: Parity & sign of permutation

Consider any mapping diagram of a permutation o € S,,. Let I be the number of intersection points of
the arrows. The parity of permutation ¢ is the parity of I.

Equivalently, we can express the parity of permutation in terms of its sign sgn(o) € {-1,+1}. Namely, if
o is even, we will say that sgn(o) =1, and if ¢ is odd, we will say sgn(co) = —-1.
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Example 1

For the above diagrams of permutations in S3 we have numbers of intersections

0 1
2 3
2 3

Thus the permutations in the left column are even and permutations in the right column are odd.

NB 1: Proposition 1 ensures that definition of parity is correct — and the result does not depend on the
presentation of the mapping diagram.

Example 2

1. The identity permutation which fixes all elements id € S,, has a diagram without any intersection
points. Thus id is even.

2. If T = (a,b) is a transposition (cycle of length 2) swapping elements a and b, then 7 is odd. Indeed:
Assume a < b for concreteness. Then, there is a mapping diagram of 7 such that the arrow b — a
intersects every arrow ¢ — ¢ for a < ¢ < b exactly once, and also arrow a — b intersects every such arrow
¢ — c exactly once. This gives 2(b—a—1) intersection points. Plus there is a unique intersection point of
arrows a — b and b — a (see example (3,1) above). Overall this gives an odd number of intersections.

The following proposition is the key to understanding signs of permutations.

Proposition 2

Given any permutations 0,7 € S, we have

sgn(o7) = sgn(o)sgn(t)
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Proof. If mapping diagram for t has I(7) intersection points, and mapping diagram for ¢ has I(o) intersec-
tion points, then the mapping diagram for ot obtained from “stacking” diagrams for o and 7 together, will
have I(7) + I(0) intersection points. This implies the desired identity. O

lternatively, you can think about the above claim as follows:
product of even permutations is even

product of odd permutations is even

product of an odd and an even permutations (in any order) is odd

Example 3

ycle = (ay,...,ax) of length k can be factored into a product of (k — 1) transpositions (Problem #2 from
Homework #7). Let us call these transpositions ;. Therefore

sgn(p) = sgn(ty)...sgn (1) = (-1,

Thus p is even if k is odd, and vice versa p is odd if k is even.

Problem 1: Let us think of Sy as the group of symmetries of a tetrahedron. Then each rigid motion of a
tetrahedron can be classified as odd or even, according to the parity of the corresponding permutation.
Give a geometric characterization distinguishing the odd rigid motions from the even.

Example 4

Consider permutation
(1 2 3 4 5 6
"3 41 6 2 5/

Of course we could draw its diagram and try to find its parity by intersection points count. But a much
more efficient approach relies on Proposition 2 and the factorization of ¢ into independent cycles:

First we factorize o into cycles
o=(1,3)(2,4,6,5)

Both cycles (1,3) and (2,4, 6,5) are of even length, thus they have odd parity by the previous example.
Therefore o as a product of two odd permutations is even itself.

[ Problem 2: Let A, C S, be the subset consisting of all even permutations. Prove that A, is a subgroup. ]




