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Lecture 16
Homomorphisms
Definition 1: Homomorphism
Let (G,*) and (H, ) be two groups. A map
f:G—->H

is called a homomorphism if for any elements x,y € G we have

flx=y)=f(x) f(»)

If f is also bijective, we call it an isomorphism.

Example 1

* Let S, be a permutation group, and H = {+1, -1} be a group with respect to multiplication. Then
sign of permutation defines a homomorphism

sgn: S, — {+1,-1}.
Indeed, sgn satisfies the key property:
sgn(ot) = sgn(o)sgn(t).
* Consider G =Zg and H = Z3. Define a map
f1Z¢—Z;

as follows. Take any integer x representing a congruence class in Zg. Then a = (x mod 3) repre-
sents a class in Z3. This gives a well-defined map Zg — Z3:

f(x)=(x mod3)eZ;j
This map is an isomorphism, since
(x+y mod3)=(x mod3)+(y mod3).
* For any groups (G, *) and (H,-) there is a trivial homomorphism:

f(x)=eqy

for all x € G, where ey € H is the identity.

From now on, by default, we will use multiplication as the group operation.
Let f: G — H be a homomorphism. Then
1. f(eg) = ey, where eg € G and ey € H are identities;
2. f(x 1) =f(x)!, forany x € G;

3. Im(f)C H is a subgroup.

Proof. 1. Let a = f(eg). By homomorphism property, we have

a=fleg) = flegeg) = f(eg)f (e) = a’.

Thus in H we have a = a2, which implies a = ey.
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2. To prove that f(x!) is the inverse of f(x) € H, we need to compute the product:

Ff(x) = f(x7'x) = fleg) = en-

Thus f(x7!) is the inverse of f(x).
3. We need to verify two claims:

* Claim 1: for any a,b € Im(f) we have ab € Im(f). Indeed we know that there exists x,y € G such that

Thus f(xy) = f(x)f(y) = ab implying that ab € Im(f).

* Claim 2: for any a € Im(f) we have a~! € Im(f). Indeed, if a = f(x), then by part 2 of this proposition,
al=f(x7h).

O
Definition 2: Kernel of a homomorphism
Let f: G — H be a homomorphism. A kernel of f
Ker(f)c G

is the set
Ker(f) = {x € G| f(x) = ep)

Proposition 2

Kernel Ker(f) C G is a subgroup. Furthermore, it is a normal subgroup, meaning that for any x € Ker(f)
and any g € G we have

¢ 'xg e Ker(f).

Proof. Let x,y € Ker(f) be any two elements, i.e.,

fx)=f()=ey
Then
flxy)=f(x)f(y) =en
and
fa ) =f(x) " =ep.

This proves that Ker(f) C G is a subgroup. Now let us prove that Ker(f) C G is a normal subgroup. Indeed
for any x € Ker(f) and any g € G we have

flg'xg)=f(g™") f(x) f(e)=F(g " )f(8)=Ff(g ') =en.

Thus by definition f~!'xg € Ker(f). O

Problem 1: Give an example of a group G and its subgroup H C G which is not normal.

Example 2: Alternating group
Let sgn: S, — {+1,—-1} be the sign homomorphism. Then Ker(sgn) C S,, is the set of all even permuta-
tions, and by the above it forms a normal subgroup of S,,.

This group has a special name: alternating group ans is often denoted as

A, :=Ker(sgn).
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Proposition 3

IA,| = n!/2.

Proof. Since |S,|=n!and S, = {even permutations}U {odd permutations}, it is enough to prove that
|{even permutations}| = |{odd permutations}|.
To this end we construct a bijection

f =: {even permutations} — {odd permutations}.

We first define F: S, — S,
F(o)=(1,2)o.

Since every transposition is odd, for ¢ even, F(o) is odd, and vice versa — for ¢ odd, F(o) is even.
Finally F o F =idg , i.e., F is its own inverse. Thus if we restrict F only on the subset {even permutations},
we will get a bijection between even and odd permutations. O




