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Lecture 16

Homomorphisms

Definition 1: Homomorphism

Let (G,∗) and (H, ·) be two groups. A map
f : G→H

is called a homomorphism if for any elements x,y ∈ G we have

f (x ∗ y) = f (x) · f (y).

If f is also bijective, we call it an isomorphism.

Example 1

• Let Sn be a permutation group, and H = {+1,−1} be a group with respect to multiplication. Then
sign of permutation defines a homomorphism

sgn: Sn→ {+1,−1}.

Indeed, sgn satisfies the key property:

sgn(στ) = sgn(σ )sgn(τ).

• Consider G = Z6 and H = Z3. Define a map

f : Z6→Z3

as follows. Take any integer x representing a congruence class in Z6. Then a = (x mod 3) repre-
sents a class in Z3. This gives a well-defined map Z6→Z3:

f (x) = (x mod 3) ∈Z3

This map is an isomorphism, since

(x+ y mod 3) = (x mod 3) + (y mod 3).

• For any groups (G,∗) and (H, ·) there is a trivial homomorphism:

f (x) = eH

for all x ∈ G, where eH ∈H is the identity.

From now on, by default, we will use multiplication as the group operation.

Proposition 1

Let f : G→H be a homomorphism. Then

1. f (eG) = eH , where eG ∈ G and eH ∈H are identities;

2. f (x−1) = f (x)−1, for any x ∈ G;

3. =(f ) ⊂H is a subgroup.

Proof. 1. Let a = f (eG). By homomorphism property, we have

a = f (eG) = f (eGeG) = f (eG)f (eG) = a2.

Thus in H we have a = a2, which implies a = eH .
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2. To prove that f (x−1) is the inverse of f (x) ∈H , we need to compute the product:

f (x−1)f (x) = f (x−1x) = f (eG) = eH .

Thus f (x−1) is the inverse of f (x).
3. We need to verify two claims:

• Claim 1: for any a,b ∈=(f ) we have ab ∈=(f ). Indeed we know that there exists x,y ∈ G such that

f (x) = a f (y) = b.

Thus f (xy) = f (x)f (y) = ab implying that ab ∈=(f ).

• Claim 2: for any a ∈=(f ) we have a−1 ∈=(f ). Indeed, if a = f (x), then by part 2 of this proposition,
a−1 = f (x−1).

Definition 2: Kernel of a homomorphism

Let f : G→H be a homomorphism. A kernel of f

Ker(f ) ⊂ G

is the set
Ker(f ) = {x ∈ G | f (x) = eH }.

Proposition 2

Kernel Ker(f ) ⊂ G is a subgroup. Furthermore, it is a normal subgroup, meaning that for any x ∈ Ker(f )
and any g ∈ G we have

g−1xg ∈ Ker(f ).

Proof. Let x,y ∈ Ker(f ) be any two elements, i.e.,

f (x) = f (y) = eH

Then
f (xy) = f (x)f (y) = eH

and
f (x−1) = f (x)−1 = eH .

This proves that Ker(f ) ⊂ G is a subgroup. Now let us prove that Ker(f ) ⊂ G is a normal subgroup. Indeed
for any x ∈ Ker(f ) and any g ∈ G we have

f (g−1xg) = f (g−1) f (x)︸︷︷︸
eH

f (g) = f (g−1)f (g) = f ( g−1g︸︷︷︸
eG

) = eH .

Thus by definition f −1xg ∈ Ker(f ).

Problem 1: Give an example of a group G and its subgroup H ⊂ G which is not normal.

Example 2: Alternating group

Let sgn: Sn → {+1,−1} be the sign homomorphism. Then Ker(sgn) ⊂ Sn is the set of all even permuta-
tions, and by the above it forms a normal subgroup of Sn.
This group has a special name: alternating group ans is often denoted as

An := Ker(sgn).
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Proposition 3

|An| = n!/2.

Proof. Since |Sn| = n! and Sn = {even permutations} ∪ {odd permutations}, it is enough to prove that

|{even permutations}| = |{odd permutations}|.

To this end we construct a bijection

f =: {even permutations} → {odd permutations}.

We first define F : Sn→ Sn
F(σ ) = (1,2)σ.

Since every transposition is odd, for σ even, F(σ ) is odd, and vice versa — for σ odd, F(σ ) is even.
Finally F ◦ F = idSn , i.e., F is its own inverse. Thus if we restrict F only on the subset {even permutations},
we will get a bijection between even and odd permutations.
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