Lecture 16

Homomorphisms

Definition 1: Homomorphism

Let (G, *) and (H, \cdot) be two groups. A map

 $f: G \to H$

is called a *homomorphism* if for any elements $x, y \in G$ we have

$$f(x * y) = f(x) \cdot f(y).$$

If *f* is also bijective, we call it an *isomorphism*.

Example 1

• Let S_n be a permutation group, and $H = \{+1, -1\}$ be a group with respect to multiplication. Then *sign* of permutation defines a homomorphism

sgn:
$$S_n \rightarrow \{+1, -1\}$$
.

Indeed, sgn satisfies the key property:

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau).$$

• Consider $G = \mathbb{Z}_6$ and $H = \mathbb{Z}_3$. Define a map

$$f: \mathbb{Z}_6 \to \mathbb{Z}_3$$

as follows. Take any integer *x* representing a congruence class in \mathbb{Z}_6 . Then $a = (x \mod 3)$ represents a class in \mathbb{Z}_3 . This gives a well-defined map $\mathbb{Z}_6 \to \mathbb{Z}_3$:

$$f(x) = (x \mod 3) \in \mathbb{Z}_3$$

This map is an isomorphism, since

 $(x + y \mod 3) = (x \mod 3) + (y \mod 3).$

• For any groups (G, *) and (H, \cdot) there is a trivial homomorphism:

 $f(x) = e_H$

for all $x \in G$, where $e_H \in H$ is the identity.

From now on, by default, we will use multiplication as the group operation.

Proposition 1

Let $f: G \to H$ be a homomorphism. Then

- 1. $f(e_G) = e_H$, where $e_G \in G$ and $e_H \in H$ are identities;
- 2. $f(x^{-1}) = f(x)^{-1}$, for any $x \in G$;
- 3. $\operatorname{Im}(f) \subset H$ is a subgroup.

Proof. 1. Let $a = f(e_G)$. By homomorphism property, we have

 $a = f(e_G) = f(e_G e_G) = f(e_G)f(e_G) = a^2.$

Thus in *H* we have $a = a^2$, which implies $a = e_H$.

2. To prove that $f(x^{-1})$ is the inverse of $f(x) \in H$, we need to compute the product:

$$f(x^{-1})f(x) = f(x^{-1}x) = f(e_G) = e_H.$$

Thus $f(x^{-1})$ is the inverse of f(x). 3. We need to verify two claims:

• Claim 1: for any $a, b \in \text{Im}(f)$ we have $ab \in \text{Im}(f)$. Indeed we know that there exists $x, y \in G$ such that

$$f(x) = a \quad f(y) = b.$$

Thus f(xy) = f(x)f(y) = ab implying that $ab \in \text{Im}(f)$.

• Claim 2: for any $a \in \text{Im}(f)$ we have $a^{-1} \in \text{Im}(f)$. Indeed, if a = f(x), then by part 2 of this proposition, $a^{-1} = f(x^{-1})$.

Definition 2: Kernel of a homomorphism

Let $f: G \to H$ be a homomorphism. A *kernel* of f

 $\operatorname{Ker}(f) \subset G$

is the set

$$\operatorname{Ker}(f) = \{ x \in G \mid f(x) = e_H \}.$$

Proposition 2

Kernel Ker(f) \subset G is a subgroup. Furthermore, it is a *normal* subgroup, meaning that for any $x \in$ Ker(f) and any $g \in G$ we have

$$g^{-1}xg \in \operatorname{Ker}(f).$$

Proof. Let $x, y \in \text{Ker}(f)$ be any two elements, i.e.,

$$f(x) = f(y) = e_H$$

Then

and

$$f(x^{-1}) = f(x)^{-1} = e_H.$$

 $f(xy) = f(x)f(y) = e_H$

This proves that $\text{Ker}(f) \subset G$ is a subgroup. Now let us prove that $\text{Ker}(f) \subset G$ is a normal subgroup. Indeed for any $x \in \text{Ker}(f)$ and any $g \in G$ we have

$$f(g^{-1}xg) = f(g^{-1})\underbrace{f(x)}_{e_H} f(g) = f(g^{-1})f(g) = f(\underbrace{g^{-1}g}_{e_G}) = e_H.$$

Thus by definition $f^{-1}xg \in \text{Ker}(f)$.

Problem 1: Give an example of a group *G* and its subgroup $H \subset G$ which is not normal.

Example 2: Alternating group

Let sgn: $S_n \rightarrow \{+1, -1\}$ be the sign homomorphism. Then Ker(sgn) $\subset S_n$ is the set of all *even permutations*, and by the above it forms a normal subgroup of S_n . This group has a special name: *alternating group* and is often denoted as

$$A_n := \operatorname{Ker}(\operatorname{sgn}).$$

Proposition 3

$|A_n| = n!/2.$

Proof. Since $|S_n| = n!$ and $S_n = \{\text{even permutations}\} \cup \{\text{odd permutations}\}, \text{ it is enough to prove that}$

|{even permutations}| = |{odd permutations}|.

To this end we construct a bijection

 $f =: \{\text{even permutations}\} \rightarrow \{\text{odd permutations}\}.$

We first define $F: S_n \to S_n$

 $F(\sigma) = (1, 2)\sigma$.

Since every transposition is odd, for σ even, $F(\sigma)$ is odd, and vice versa — for σ odd, $F(\sigma)$ is even. Finally $F \circ F = id_{S_n}$, i.e., F is its own inverse. Thus if we restrict F only on the subset {even permutations}, we will get a bijection between even and odd permutations.