Lecture 16

Homomorphisms

Definition 1: Homomorphism

Let $(G, *)$ and (H, \cdot) be two groups. A map

$$
f: G \rightarrow H
$$

is called a homomorphism if for any elements $x, y \in G$ we have

$$
f(x * y)=f(x) \cdot f(y) .
$$

If f is also bijective, we call it an isomorphism.

Example 1

- Let S_{n} be a permutation group, and $H=\{+1,-1\}$ be a group with respect to multiplication. Then sign of permutation defines a homomorphism

$$
\operatorname{sgn}: S_{n} \rightarrow\{+1,-1\} .
$$

Indeed, sgn satisfies the key property:

$$
\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)
$$

- Consider $G=\mathbb{Z}_{6}$ and $H=\mathbb{Z}_{3}$. Define a map

$$
f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{3}
$$

as follows. Take any integer x representing a congruence class in \mathbb{Z}_{6}. Then $a=(x \bmod 3)$ represents a class in \mathbb{Z}_{3}. This gives a well-defined $\operatorname{map} \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{3}$:

$$
f(x)=\left(\begin{array}{ll}
x & \bmod 3
\end{array}\right) \in \mathbb{Z}_{3}
$$

This map is an isomorphism, since

$$
(x+y \bmod 3)=(x \bmod 3)+(y \bmod 3)
$$

- For any groups $(G, *)$ and (H, \cdot) there is a trivial homomorphism:

$$
f(x)=e_{H}
$$

for all $x \in G$, where $e_{H} \in H$ is the identity.

From now on, by default, we will use multiplication as the group operation.

Proposition 1

Let $f: G \rightarrow H$ be a homomorphism. Then

1. $f\left(e_{G}\right)=e_{H}$, where $e_{G} \in G$ and $e_{H} \in H$ are identities;
2. $f\left(x^{-1}\right)=f(x)^{-1}$, for any $x \in G$;
3. $\operatorname{Im}(f) \subset H$ is a subgroup.

Proof. 1. Let $a=f\left(e_{G}\right)$. By homomorphism property, we have

$$
a=f\left(e_{G}\right)=f\left(e_{G} e_{G}\right)=f\left(e_{G}\right) f\left(e_{G}\right)=a^{2} .
$$

Thus in H we have $a=a^{2}$, which implies $a=e_{H}$.
2. To prove that $f\left(x^{-1}\right)$ is the inverse of $f(x) \in H$, we need to compute the product:

$$
f\left(x^{-1}\right) f(x)=f\left(x^{-1} x\right)=f\left(e_{G}\right)=e_{H} .
$$

Thus $f\left(x^{-1}\right)$ is the inverse of $f(x)$.
3 . We need to verify two claims:

- Claim 1: for any $a, b \in \operatorname{Im}(f)$ we have $a b \in \operatorname{Im}(f)$. Indeed we know that there exists $x, y \in G$ such that

$$
f(x)=a \quad f(y)=b
$$

Thus $f(x y)=f(x) f(y)=a b$ implying that $a b \in \operatorname{Im}(f)$.

- Claim 2: for any $a \in \operatorname{Im}(f)$ we have $a^{-1} \in \operatorname{Im}(f)$. Indeed, if $a=f(x)$, then by part 2 of this proposition, $a^{-1}=f\left(x^{-1}\right)$.

Definition 2: Kernel of a homomorphism

Let $f: G \rightarrow H$ be a homomorphism. A kernel of f

$$
\operatorname{Ker}(f) \subset G
$$

is the set

$$
\operatorname{Ker}(f)=\left\{x \in G \mid f(x)=e_{H}\right\}
$$

Proposition 2

Kernel $\operatorname{Ker}(f) \subset G$ is a subgroup. Furthermore, it is a normal subgroup, meaning that for any $x \in \operatorname{Ker}(f)$ and any $g \in G$ we have

$$
g^{-1} x g \in \operatorname{Ker}(f)
$$

Proof. Let $x, y \in \operatorname{Ker}(f)$ be any two elements, i.e.,

$$
f(x)=f(y)=e_{H}
$$

Then

$$
f(x y)=f(x) f(y)=e_{H}
$$

and

$$
f\left(x^{-1}\right)=f(x)^{-1}=e_{H}
$$

This proves that $\operatorname{Ker}(f) \subset G$ is a subgroup. Now let us prove that $\operatorname{Ker}(f) \subset G$ is a normal subgroup. Indeed for any $x \in \operatorname{Ker}(f)$ and any $g \in G$ we have

$$
f\left(g^{-1} x g\right)=f\left(g^{-1}\right) \underbrace{f(x)}_{e_{H}} f(g)=f\left(g^{-1}\right) f(g)=f(\underbrace{g^{-1} g}_{e_{G}})=e_{H} .
$$

Thus by definition $f^{-1} x g \in \operatorname{Ker}(f)$.

Problem 1: Give an example of a group G and its subgroup $H \subset G$ which is not normal.

Example 2: Alternating group

Let sgn: $S_{n} \rightarrow\{+1,-1\}$ be the sign homomorphism. Then $\operatorname{Ker}(\mathrm{sgn}) \subset S_{n}$ is the set of all even permutations, and by the above it forms a normal subgroup of S_{n}.
This group has a special name: alternating group ans is often denoted as

$$
A_{n}:=\operatorname{Ker}(\mathrm{sgn})
$$

Proposition 3

$\left|A_{n}\right|=n!/ 2$.

Proof. Since $\left|S_{n}\right|=n!$ and $S_{n}=\{$ even permutations $\} \cup\{$ odd permutations $\}$, it is enough to prove that
|\{even permutations $\}|=|\{$ odd permutations $\} \mid$.
To this end we construct a bijection

$$
f=:\{\text { even permutations }\} \rightarrow\{\text { odd permutations }\}
$$

We first define $F: S_{n} \rightarrow S_{n}$

$$
F(\sigma)=(1,2) \sigma .
$$

Since every transposition is odd, for σ even, $F(\sigma)$ is odd, and vice versa - for σ odd, $F(\sigma)$ is even.
Finally $F \circ F=\mathrm{i} d_{S_{n}}$, i.e., F is its own inverse. Thus if we restrict F only on the subset \{even permutations\}, we will get a bijection between even and odd permutations.

