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Lecture 17
Reference: Judson, Chapters 9.1 & 5.2

Cayley theorem

Proposition 1

Let f : G→H be a group homomorphism. Then f is injective if and only if kernel of f is trivial, i.e.:

Ker(f ) = {eG}.

Proof. Recall that
Ker(f ) = {x ∈ G | f (x) = eH }.

We need to prove the statement in two directions.
1. If f is injective, then Ker(f ) = {eG}. Indeed, for any homomorphism eG ∈ Ker(f ), since f (eG) = eH . On the
other hand, since f is injective, there is at most one element in G which is mapped to eH , thus Ker(f ) must
consist of a single element.
2. If Ker(f ) = {eG}, then f is injective.
Take any two elements x,y ∈ G such that f (x) = f (y). We are about to prove that x = y. Consider xy−1 ∈ G.
For this element we have

f (xy−1) = f (x)f (y−1) = f (x)f (y)−1 = eH ,

where in the first equality we used the defining property of a homomorphism, in the second equality we
used the statement that f (y)−1 = f (y−1) and the last equality follows from the assumptions f (x) = f (y).
Thus xy−1 ∈ Ker(f ). Since Ker(f ) consists only of eG this implies x = y.

The above proposition gives a very efficient way to check whether a given homomorphism is injective or not.

Remark 1

If f : G→H is an injective homomorphism, then G is isomorphic to a subgroup=(G) ⊂H , where

=(g) = {f (x) | x ∈ G} ⊂H.

Indeed, f establishes a bijection between G and=(G) and respects the group operations.

Theorem 1: Cayley theorem

Let G be a finite group of size n. Then G is isomorphic to a subgroup of Sn.

Proof. We will construct an injective homomorphism from G to Sn:

f : G→ Sn

Label all elements of G by {a1, a2, . . . an}. We will assign a permutation σ ∈ Sn to every element x ∈ G as
follows.
Consider a string of elements in G:

xa1, . . . ,xan.

By the left cancellation property (or ‘Sudoku’ rule) this string contains all every element in {a1, . . . , an}
exactly once. In other words, there is a permutation σ such that each xai equals aσ (i). Thus we define
f (x) = σ ∈ Sn.
1. f is a homomorphism. Assume that f (x) = σ and f (y) = µ. Then, to compute f (xy) we analyze the effect
of multiplying {a1, . . . , an} with xy:

xya1, . . . ,xyan

by definition of f (y) = µ is the same as
xaµ(1), . . .xaµ(n)

which in its turn by definition of f (x) = σ is the same as

aσ (µ(1)), . . . , aσ (µ(n))
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Thus f (xy) = σ ◦µ = f (x) ◦ f (y), proving that f is a homomorphism.
2. To prove that f is injective, we just observe that if x ∈ G is not identity, then

xa1 , a1

thus f (x) can not be the identity permutation. Thus Ker(f ) = {eG}, implying that f is injective.

This theorem shows that permutation group is in some sense ‘universal’, and understanding well-enough
permutation group Sn we can derive statements about groups of size n.

Example 1

Consider G = Z4 and label its elements as

a1 = 0, a2 = 1, a3 = 2, a4 = 3.

We will follow the construction in the above proof and provide an injective homomorphism f : Z4→ S4.
The Cayley table for this group looks like

+ a1 a2 a3 a4
a1 a1 a2 a3 a4
a2 a2 a3 a4 a1
a3 a3 a4 a1 a2
a4 a4 a1 a2 a3

Thus we can read off the map f by considering rows of this table:

f (a1) =
(
1 2 3 4
1 2 3 4

)
= id

which is not surprising as a1 = 0 is the neutral element. Proceeding in the same way, we find

f (a2) =
(
1 2 3 4
2 3 4 1

)
f (a3) =

(
1 2 3 4
3 4 1 2

)
f (a4) =

(
1 2 3 4
4 1 2 3

)
.

In other words, f sends a2 = 1 to the cycles (1234), and sends all other elements to its corresponding
powers.

Dihedral group Dn

Definition 1: Dihedral groups

The group of rigid motions of a regular polygon with n vertices Pn (n > 3) is called the n-th dihedral
group Dn.

Example 2

For n = 3 we get the group of rigid motions of an equilateral triangle, which consists of 3 axial symme-
tries, 2 rotations by ±120◦ and the identity. We know that

D3 ' S3.

Remark 2

Let us label vertices of the polygon as {1,2, . . . ,n}. Then any rigid motion of the polygon induces a
permutation of {1,2, . . . ,n}, since every rigid motion permutes the vertices. Thus we can think of Dn as
a subgroup of Sn.
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Proposition 2: Counting rigid motions

|Dn| = 2n.

Proof. To count the number of elements in Dn, we first observe that every rigid motion f of the polygon is
completely determined by the images of two adjacent vertices 1 and 2.
For vertex 1 we have exactly n options for where to map it — any of the n vertices of the polygon. If we fix

f (1) = k

then for vertex 2 we have exactly two options to define f (2):

f (2) = k − 1 or f (2) = k + 1.

Overall this gives n× 2 options, and we have |Dn| = 2n.

Proposition 3

Let r ∈Dn be a rotation by 2π/n clockwise, and denote by s ∈Dn the reflection in the axis going through
vertex 1 and the center of the polygon. Then

Dn = {r0, r1, . . . , rn−1, sr0, sr1, . . . , srn−1}.
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