Lecture 17

Reference: Judson, Chapters 9.1 \& 5.2

Cayley theorem

Proposition 1

Let $f: G \rightarrow H$ be a group homomorphism. Then f is injective if and only if kernel of f is trivial, i.e.:

$$
\operatorname{Ker}(f)=\left\{e_{G}\right\} .
$$

Proof. Recall that

$$
\operatorname{Ker}(f)=\left\{x \in G \mid f(x)=e_{H}\right\} .
$$

We need to prove the statement in two directions.

1. If f is injective, then $\operatorname{Ker}(f)=\left\{e_{G}\right\}$. Indeed, for any homomorphism $e_{G} \in \operatorname{Ker}(f)$, since $f\left(e_{G}\right)=e_{H}$. On the other hand, since f is injective, there is at most one element in G which is mapped to e_{H}, thus $\operatorname{Ker}(f)$ must consist of a single element.
2. If $\operatorname{Ker}(f)=\left\{e_{G}\right\}$, then f is injective.

Take any two elements $x, y \in G$ such that $f(x)=f(y)$. We are about to prove that $x=y$. Consider $x y^{-1} \in G$. For this element we have

$$
f\left(x y^{-1}\right)=f(x) f\left(y^{-1}\right)=f(x) f(y)^{-1}=e_{H}
$$

where in the first equality we used the defining property of a homomorphism, in the second equality we used the statement that $f(y)^{-1}=f\left(y^{-1}\right)$ and the last equality follows from the assumptions $f(x)=f(y)$.
Thus $x y^{-1} \in \operatorname{Ker}(f)$. Since $\operatorname{Ker}(f)$ consists only of e_{G} this implies $x=y$.
The above proposition gives a very efficient way to check whether a given homomorphism is injective or not.

Remark 1

If $f: G \rightarrow H$ is an injective homomorphism, then G is isomorphic to a subgroup $\operatorname{Im}(G) \subset H$, where

$$
\operatorname{Im}(g)=\{f(x) \mid x \in G\} \subset H
$$

Indeed, f establishes a bijection between G and $\operatorname{Im}(G)$ and respects the group operations.

Theorem 1: Cayley theorem

Let G be a finite group of size n. Then G is isomorphic to a subgroup of S_{n}.

Proof. We will construct an injective homomorphism from G to S_{n} :

$$
f: G \rightarrow S_{n}
$$

Label all elements of G by $\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$. We will assign a permutation $\sigma \in S_{n}$ to every element $x \in G$ as follows.
Consider a string of elements in G :

$$
x a_{1}, \ldots, x a_{n}
$$

By the left cancellation property (or 'Sudoku' rule) this string contains all every element in $\left\{a_{1}, \ldots, a_{n}\right\}$ exactly once. In other words, there is a permutation σ such that each $x a_{i}$ equals $a_{\sigma(i)}$. Thus we define $f(x)=\sigma \in S_{n}$.

1. f is a homomorphism. Assume that $f(x)=\sigma$ and $f(y)=\mu$. Then, to compute $f(x y)$ we analyze the effect of multiplying $\left\{a_{1}, \ldots, a_{n}\right\}$ with $x y$:

$$
x y a_{1}, \ldots, x y a_{n}
$$

by definition of $f(y)=\mu$ is the same as

$$
x a_{\mu(1)}, \ldots x a_{\mu(n)}
$$

which in its turn by definition of $f(x)=\sigma$ is the same as

$$
a_{\sigma(\mu(1))}, \ldots, a_{\sigma(\mu(n))}
$$

Thus $f(x y)=\sigma \circ \mu=f(x) \circ f(y)$, proving that f is a homomorphism.
2. To prove that f is injective, we just observe that if $x \in G$ is not identity, then

$$
x a_{1} \neq a_{1}
$$

thus $f(x)$ can not be the identity permutation. Thus $\operatorname{Ker}(f)=\left\{e_{G}\right\}$, implying that f is injective.
This theorem shows that permutation group is in some sense 'universal', and understanding well-enough permutation group S_{n} we can derive statements about groups of size n.

Example 1

Consider $G=\mathbb{Z}_{4}$ and label its elements as

$$
a_{1}=0, a_{2}=1, a_{3}=2, a_{4}=3
$$

We will follow the construction in the above proof and provide an injective homomorphism $f: \mathbb{Z}_{4} \rightarrow S_{4}$. The Cayley table for this group looks like

+	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	a_{1}	a_{2}	a_{3}	a_{4}
a_{2}	a_{2}	a_{3}	a_{4}	a_{1}
a_{3}	a_{3}	a_{4}	a_{1}	a_{2}
a_{4}	a_{4}	a_{1}	a_{2}	a_{3}

Thus we can read off the map f by considering rows of this table:

$$
f\left(a_{1}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)=\mathrm{i} d
$$

which is not surprising as $a_{1}=0$ is the neutral element. Proceeding in the same way, we find

$$
f\left(a_{2}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right) \quad f\left(a_{3}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right) \quad f\left(a_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right)
$$

In other words, f sends $a_{2}=1$ to the cycles (1234), and sends all other elements to its corresponding powers.

Dihedral group D_{n}

Definition 1: Dihedral groups

The group of rigid motions of a regular polygon with n vertices $P_{n}(n \geqslant 3)$ is called the n-th dihedral group D_{n}.

Example 2

For $n=3$ we get the group of rigid motions of an equilateral triangle, which consists of 3 axial symmetries, 2 rotations by $\pm 120^{\circ}$ and the identity. We know that

$$
D_{3} \simeq S_{3} .
$$

Remark 2

Let us label vertices of the polygon as $\{1,2, \ldots, n\}$. Then any rigid motion of the polygon induces a permutation of $\{1,2, \ldots, n\}$, since every rigid motion permutes the vertices. Thus we can think of D_{n} as a subgroup of S_{n}.

Proposition 2: Counting rigid motions

$\left|D_{n}\right|=2 n$.

Proof. To count the number of elements in D_{n}, we first observe that every rigid motion f of the polygon is completely determined by the images of two adjacent vertices 1 and 2.
For vertex 1 we have exactly n options for where to map it - any of the n vertices of the polygon. If we fix

$$
f(1)=k
$$

then for vertex 2 we have exactly two options to define $f(2)$:

$$
f(2)=k-1 \quad \text { or } \quad f(2)=k+1
$$

Overall this gives $n \times 2$ options, and we have $\left|D_{n}\right|=2 n$.

Proposition 3

Let $r \in D_{n}$ be a rotation by $2 \pi / n$ clockwise, and denote by $s \in D_{n}$ the reflection in the axis going through vertex 1 and the center of the polygon. Then

$$
D_{n}=\left\{r^{0}, r^{1}, \ldots, r^{n-1}, s r^{0}, s r^{1}, \ldots, s r^{n-1}\right\} .
$$

