Lecture 18

Reference: Judson, Chapter 11

Cosets of Kernels

In this section we will relate two notions in group theory — homomorphisms and kernels — through the partition of a group into cosets of the kernel.

Let

 $f: G \to H$

be a *homomorphism* of groups (recall that it means that for any $x, y \in G$, we have f(xy) = f(x)f(y). Consider also the *kernel* of f:

$$\operatorname{Ker}(f) = \{ x \in G \mid f(x) = e_H \}.$$

Since $\text{Ker}(f) \subset G$ is a subgroup, we can consider the partition of G into (left) cosets, which are, by definition, subsets

$$g\operatorname{Ker}(f) = \{gx \mid x \in \operatorname{Ker}(f)\}.$$

Question 1

What are the left cosets of Ker(f)?

Proposition 1

Elements $x, y \in G$ belong to the same left coset of Ker(f) if and only if

f(x) = f(y)

Proof. Elements x and y belong to the same left coset of Ker(f) *if and only if* one can multiply x **from the left** by an element k in Ker(f) and obtain y:

xk = y.

This happens *if and only if* $y^{-1}x \in \text{Ker}(f)$. By definition, the latter holds if and only if

 $f(y-1x) = e_H.$

Using the defining property of homomorphisms, we find that it happens if and only if

$$f(y)^{-1}f(x) = e_H \iff f(x) = f(y).$$

Since at each step of our proof we used **if and only if** statements, we have proved the proposition in both directions. \Box

Corollary 1

Left cosets of $\text{Ker}(f) \subset G$ are in 1-to-1 correspondence with the image $\text{Im}(f) \subset H$.

Remark 1

The entire discussion above holds verbatim for the *right* cosets.

Definition 1: L

t $f: X \to Y$ be a map between **sets**. A **fiber** over an element $y \in Y$ is the set of all elements in X mapped to this *y*:

$$f^{-1}(y) = \{x \in X \mid f(x) = y\} \subset X.$$

Proposition 1 can be now stated as follows: left cosets of Ker(f) are precisely the nonempty fibers of f.

Example 1

Consider the *sign* homomorphism:

Its kernel is the alternating group A_n . This group has two cosets:

 $A_n = \{\text{even permutations}\}, \{\text{odd permutation}\}$

sgn: $S_n \rightarrow \{+1, -1\}$.

which correspond respectively to elements +1 and -1 of group $\{+1, -1\}$.

Example 2

Consider a homomorphism

defined by

 $f(x) = 2x \mod 4$

 $f: \mathbb{Z}_8 \to \mathbb{Z}_4$

Elementwise this map can be presented as follows:

Thus we see that both fibers $f^{-1}(0)$ and $f^{-1}(2)$ have 4 elements (the size of Ker(f)), while the fibers $f^{-1}(1)$ and $f^{-1}(3)$ are empty, because 1 and 3 are not in the image of f.

There is an important enumerative corollary of the above proposition.

Proposition 2

If $f: G \to H$ is a homomorphism, then

•
$$[G: \operatorname{Ker}(f)] = |\operatorname{Im}(f)|$$

• $|G| = |\operatorname{Im}(f)| \cdot |\operatorname{Ker}(f)|$

Proof. From Proposition 1 we know that the left cosets of Ker(f) in 1-to-1 correspondence with |Im(f)|. This proofs the first claim.

To prove the second claim, we invoke Lagrange's theorem, which states that for any subgroup $K \subset G$

$$|G| = [G:K] \cdot |K|,$$

apply it to K = Ker(f), and substitute [G : Ker(f)] from the first part.

This proposition can be useful in studying homomorphisms between different groups.

Example 3

Consider a homomorphism $f: S_5 \to \mathbb{Z}_7$. On one hand, by Lagrange's theorem the size of subgroup $\text{Im}(f) \subset \mathbb{Z}_7$ divides 7.

On the other hand, by the proposition

$$\underbrace{|S_5|}_{5!=120} = |\operatorname{Ker}(f)||\operatorname{Im}(f)|,$$

thus |Im(f)| is a factor of 120.

The only option this leaves for |Im(f)| is 1, hence f is a *trivial* homomorphism, i.e., it maps every element of S_5 to the identity $0 \in \mathbb{Z}_7$.