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Lecture 18
Reference: Judson, Chapter 11

Cosets of Kernels

In this section we will relate two notions in group theory — homomorphisms and kernels — through the
partition of a group into cosets of the kernel.

Let
f : G→H

be a homomorphism of groups (recall that it means that for any x,y ∈ G, we have f (xy) = f (x)f (y). Consider
also the kernel of f :

Ker(f ) = {x ∈ G | f (x) = eH }.

Since Ker(f ) ⊂ G is a subgroup, we can consider the partition of G into (left) cosets, which are, by definition,
subsets

gKer(f ) = {gx | x ∈ Ker(f )}.

Question 1

What are the left cosets of Ker(f )?

Proposition 1

Elements x,y ∈ G belong to the same left coset of Ker(f ) if and only if

f (x) = f (y)

Proof. Elements x and y belong to the same left coset of Ker(f ) if and only if one can multiply x from the
left by an element k in Ker(f ) and obtain y:

xk = y.

This happens if and only if y−1x ∈ Ker(f ).
By definition, the latter holds if and only if

f (y−1x) = eH .

Using the defining property of homomorphisms, we find that it happens if and only if

f (y)−1f (x) = eH ⇐⇒ f (x) = f (y).

Since at each step of our proof we used if and only if statements, we have proved the proposition in both
directions.

Corollary 1

Left cosets of Ker(f ) ⊂ G are in 1-to-1 correspondence with the image=(f ) ⊂H .

Remark 1

The entire discussion above holds verbatim for the right cosets.

Definition 1: L

t f : X→ Y be a map between sets. A fiber over an element y ∈ Y is the set of all elements in X mapped
to this y:

f −1(y) = {x ∈ X | f (x) = y} ⊂ X.

Proposition 1 can be now stated as follows: left cosets of Ker(f ) are precisely the nonempty fibers of f .

1



Yury Ustinovskiy Algebra MATH-UA.0343-003 Fall 2020

Example 1

Consider the sign homomorphism:
sgn: Sn→ {+1,−1}.

Its kernel is the alternating group An. This group has two cosets:

An = {even permutations}, {odd permutation}

which correspond respectively to elements +1 and −1 of group {+1,−1}.

Example 2

Consider a homomorphism
f : Z8→Z4

defined by
f (x) = 2x mod 4

Elementwise this map can be presented as follows:

0,2,4,6

1,3,5,7

︸    ︷︷    ︸
Z8

7→

7→

0
1
2
3︸︷︷︸
Z4

Thus we see that both fibers f −1(0) and f −1(2) have 4 elements (the size of Ker(f )), while the fibers
f −1(1) and f −1(3) are empty, because 1 and 3 are not in the image of f .

There is an important enumerative corollary of the above proposition.

Proposition 2

If f : G→H is a homomorphism, then

• [G : Ker(f )] = |=(f )|

• |G| = |=(f )| · |Ker(f )|

Proof. From Proposition 1 we know that the left cosets of Ker(f ) in 1-to-1 correspondence with |Im(f )|.
This proofs the first claim.
To prove the second claim, we invoke Lagrange’s theorem, which states that for any subgroup K ⊂ G

|G| = [G : K] · |K |,

apply it to K = Ker(f ), and substitute [G : Ker(f )] from the first part.

This proposition can be useful in studying homomorphisms between different groups.
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Example 3

Consider a homomorphism f : S5 → Z7. On one hand, by Lagrange’s theorem the size of subgroup
=(f ) ⊂Z7 divides 7.
On the other hand, by the proposition

|S5|︸︷︷︸
5!=120

= |Ker(f )||=(f )|,

thus |=(f )| is a factor of 120.
The only option this leaves for |=(f )| is 1, hence f is a trivial homomorphism, i.e., it maps every
element of S5 to the identity 0 ∈Z7.
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