Lecture 19

Reference: Judson, Chapter 10

Normal subgroups

Let $N \subset G$ be a subgroup. Recall a definition.

Definition 1

A subgroup $N \subset G$ is *normal* if for any element $x \in N$ and any $g \in G$ the conjugate

 gxg^{-1}

also belongs to N.

Example 1

- 1. If group *G* is abelian, then any its subgroup is automatically normal, since $gxg^{-1} = x$.
- 2. The alternating group $A_n \subset S_n$ is normal, since the conjugates

 $odd \cdot even \cdot odd^{-1}$ $even \cdot even \cdot even^{-1}$

are always even.

3. If N is the kernel of a homomorphism $f: G \to H$, then N is normal. Indeed, if $f(x) = e_H$, then

$$f(gxg^{-1}) = f(g)f(g^{-1}) = e_H,$$

so $gxg^{-1} \in \text{Ker}(f)$.

4. The subgroup $SL_n(\mathbb{R})$ of $(GL_n(\mathbb{R}), \cdot)$ is defined as the kernel of the homomorphism det : $(GL_n(\mathbb{R}), \cdot) \to (\mathbb{R}^{\times}, \cdot),$ therefore it is normal.

The following proposition gives several equivalent convenient ways to state that $N \subset G$ is normal

Proposition 1

Denote

 $gNg^{-1} := \{gxg^{-1} \mid x \in N\} \subset G.$

The following properties of a subgroup $N \subset G$ are equivalent

1. *N* is normal;

2. For any $g \in G$ we have

 $gNg^{-1} = N$

3. For any $g \in G$ the left and right cosets of N generated by g coincide:

gN = Ng.

Proof. We start by proving the implication $1 \Rightarrow 2$. If N is normal, then we have that for every $g \in G$ $gNg^{-1} \subset N$. It remains to prove the reverse inclusion. Let $x \in N$, and consider the element $k = g^{-1}xg$. Since *N* is normal, we have $k \in N$. Then $x = gkg^{-1}$ is an element of gNg^{-1} , so $N \subset gNg^{-1}$. We now prove $2 \Rightarrow 3$. Let $g \in G$, and let $x \in N$. Then $gx = gxg^{-1} \cdot g \in Ng$. Thus, we have $gN \subset Ng$. In the

same manner, we get $Ng \subset gN$.

Finally we prove $3 \Rightarrow 1$. Let $g \in G$ and $x \in N$. We want to show that $gxg^{-1} \in N$, i.e., that $gx \in Ng$. Since $gx \in gN$ which is equal to Ng by assumption, we are done. \square

Corollary 1

If group *G* has only one subgroup *H* of size *r*, then *H* is normal. Indeed, for any $g \in G$ the set gHg^{-1} is also a subgroup of *G*. Since the map

$$H \to gHg^{-1}$$
 $x \mapsto gxg^{-1}$

is a bijection (see homework # 9), gHg^{-1} is also a subgroup of size r. By assumption, such subgroup is unique, so

 $gHg^{-1} = H,$

implying via part 2 of the proposition that *H* is normal.

Corollary 2: S

bgroup $H \subset G$ of index 2 is normal.

Proof. Indeed, if $H \subset G$ has index two, then the left/right cosets of H are H and $G \setminus H$. Since the left and right cosets coincide, part 3 pf Proposition 1 implies that H is normal.

It is useful to keep in mind also non-examples.

Example 2: Non-example

Subgroup $H = \{id, (12)\} \subset S_3$ is not normal. Indeed, the left coset generated by (23) is

 $(23)H = \{(23), (23)(12)\} = \{(23), (132)\},\$

while the right coset is

 $H(23) = \{(23), (12)(23)\} = \{(23), (123)\}.$