Lecture 2

Reference: Judson, Chapters 1 & 2

Maps

Definition 1: Inverse map

Map $g: B \to A$ is the **inverse** of the map $f: A \to B$ if

$$(g \circ f) = \mathrm{i} d_A$$
, and $(f \circ g) = \mathrm{i} d_B$,

where id_A and id_B are the **identity maps** of sets A and B respectively. The inverse map is usualy denoted by

 $f^{-1}: B \to A.$

Example 1

Map	$g: [0, +\infty) \rightarrow [0, +\infty), g(x) = \sqrt{x}$
is the inverse of the map	$f: [0, +\infty) \rightarrow [0, +\infty), f(x) = x^2$
At the same time map	$f: (-\infty, +\infty) \rightarrow [0; +\infty), f(x) = x^2$
does not admit an inverse ^a .	
^a Why?	

When does a map admits an inverse? The following theorem answers this question.

Theorem 1

Map $f : A \rightarrow B$ admits an inverse if and only if f is bijective. In this case the inverse is unique.

NB: Whenever we encounter **if and only if** claim, a proof in **two directions** is required!

Proof. Direction \implies .

Assume that f admits an inverse g: $B \rightarrow A$. We are about to prove that f is injective and bijective.

• (f is injective). Indeed, assume that f(x) = f(y) for some $x, y \in A$. Apply map g to both sides of this identity, then).

$$x = id_A(x) = (g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y) = id_A(y) = y$$

So *f* is injective.

• (*f* is surjective). Take any $b \in B$. Then

$$f(g(b)) = (f \circ g)(b) = \mathrm{i}d_B(b) = b,$$

so *b* is in the range of *f*, and therefore *f* is surjective.

Direction \Leftarrow .

```
Assume that f is both injective and surjective. We are about to construct function g: B \to A which will be
the inverse of f. Given any b \in B we can find a \in A such that f(a) = b, since f is surjective. Then we define
```

$$g(b) = a$$
.

It remains to check that g is indeed the inverse map.

- Check that $(f \circ g) = id_B$. Take any $b \in B$. Then by definition of g, we have f(g(b)) = b. Therefore indeed $(f \circ g)(b) = b$.
- Check that $(g \circ f) = id_A$. Take any $a \in A$. Then we want to check that

 $(g \circ f)(a) = a.$

We already know that

$$f(g(f(a))) = f(a),$$

since $f \circ g = id_B$. Now, as f is injective the latter implies

$$g(f(a)) = a,$$

as required.

Equivalence relations

Often, given a set A, we would like to consider a *coarser* set by identifying some of the elements of A with each other. For example if $A = \{$ days in October $\}$, then planning a schedule, we might want to identify the same days of the week, e.g., October 6 would be the same to us as October 13, October 20, October 27. This procedure is formalized through the notion of *equivalence relations*.

Definition 2: Equivalence relation

Equivalence relation on a set *A* is a subset $R \subset A \times A$ satisfying the following properties

- (reflexive) for any $a \in A$ we have $(a, a) \in R$
- (symmetric) if $(a, b) \in R$, then $(b, a) \in R$.
- (transitive) if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

If we have $(a, b) \in R$ we will write ' $a \sim b$ ' and say 'a is equivalent to b'.

Set $R \subset A \times A$ consists of all pairs $a, b \in A$ which we would like to identify with each other.

Example 2

- 1. $R = \{(a, a) \mid a \in A\}$. In other words, any element *a* is equivalent only to itself.
- 2. $R = \{(a, b) \mid a, b \in A\}$. In other words, any element $a \in A$ is equivalent to any other element $b \in A$.
- 3. Take $R = \mathbb{Z}$ and define $R = \{(m, n) \mid m n \text{ is even}\} \subset \mathbb{Z} \times \mathbb{Z}$.

If $a \in A$ and \sim is an equivalence relation, we can form an equivalence class

 $[a] = \{b \in A \mid b \sim a\}.$

Proposition 1

Let ~ be an equivalence relation on the set *A*. Then any two equivalence classes [a], [b] either coincide element-wise, or do not intersect.

Proof. Exercise.

The above exercise allows to define a new set consisting of the equivalence classes:

Definition 3

The set of *equivalence classes in A modulo* an *equivalence relation* ~ is defined as

 $A/\sim = \{[a] \mid a \in A\}.$

There is a natural map

 $A \rightarrow A/\sim$, $a \mapsto [a]$

sending each element to its equivalence class.

Problem 1: When is the natural map $A \rightarrow A/ \sim$ surjective? injective? bijective?

Example 3

Going back to Example 2, we see that If $R = \{(a, a) \mid a \in A\}$ then A/ \sim is the same as AIf $R = \{(a, b) \mid a, b \in A\}$ then A/ \sim has only one element Finally, in the last example \mathbb{Z}/ \sim consists of two elements: class of odd integers and class of even integers.