Lecture 20

Reference: Judson, Chapter 11

First isomorphism theorem

Let $f: G \rightarrow H$ be a homomorphism. Then we have a normal subgroup

$$Ker(f) \subset G$$
,

thus we can also define the quotient group

$$G/\operatorname{Ker}(f)$$
.

One might ask

Question 1

Is there a relation between the groups G/Ker(f) and H and homomorphism H?

The answer to this question is given by the following fundamental result.

Theorem 1: First Isomorphism Theorem

Let $f: G \to H$ be a homomorphism. Let

$$\pi: G \to G/\operatorname{Ker}(f)$$

be the natural surjective homomorphism sending every element $x \in G$ to the coset containing x. Then there exists a unique isomorphism

$$\widetilde{f}: G/\mathrm{Ker}(f) \to \mathrm{Im}(f) \subset H$$

such that for any $x \in G$

$$f(x) = (\widetilde{f} \circ \pi)(x).$$

Proof. From the previous lecture we know that cosets of the kernel $Ker(f) \subset G$ are in 1-to-1 correspondence with the elements in Im(f). Thus we have a well-defined bijection

$$\widetilde{f}: G/\operatorname{Ker}(f) \to \operatorname{Im}(f),$$

which sends a coset $A \subset G$ to $f(a) \in \text{Im}(a)$, where a is any representative of A.

We need to check that \widetilde{f} is a homomorphism. Indeed, if $x \operatorname{Ker}(f)$ and $y \operatorname{Ker}(f)$ are any two elements of $G/\operatorname{Ker}(f)$, then

$$\widetilde{f}(x\operatorname{Ker}(f)\cdot y\operatorname{Ker}(f)) = {}^{1}\widetilde{f}(xy\operatorname{Ker} f) = {}^{2}f(xy) = {}^{3}f(x)f(y) = {}^{4}\widetilde{f}(x\operatorname{Ker}(f))\widetilde{f}(y\operatorname{Ker}(f)),$$

where in the first identity we used the definition of the multiplication in the quotient group $G/\mathrm{Ker}(f)$, in the second identity we used the definition of \widetilde{f} , in the identity 3 we used the fact that f is a homomorphism, and in the last identity 4 we again used the definition of \widetilde{f} .

Alternatively, we can formulate the First Isomorphism Theorem via a commutative diagram:

$$G \xrightarrow{f} \operatorname{Im}(f) \subset H$$

$$G/\operatorname{Ker}(f)$$

which says that given a homomorphism $f: G \to H$ and the corresponding surjective homomorphism $\pi: G \to G/\mathrm{Ker}(f)$, there exists a unique isomorphism $\widetilde{f}: G/\mathrm{Ker}(f) \to \mathrm{Im}(f)$ such that the above diagram is *commutative*, i.e., $f = \widetilde{f} \circ \pi$.

Remark 1

In many situations, the first isomorphism theorem allows us to get a better understanding of the quotient groups G/N. Specifically, if we want to describe G/N explicitly, often it is helpful to find a homomorphism

$$f: G \to H$$

to some *other* group H, such that Ker(f) = N. Then, by the theorem G/N is isomorphic to Im(f).

Example 1

1. Consider $G = S_n$ and its normal subgroup $N = A_n$. Then we can realize A_n as the kernel of the sign homomorphism

$$sgn: S_n \to \{+1, -1\}.$$

Thus

$$A_n/S_n = \text{Im}(\text{sgn}) = \{+1, -1\},$$

and the latter group is isomorphic to \mathbb{Z}_2 .

2. Let $G = GL_2(\mathbb{R})$ be the group of 2×2 matrices with nonzero determinant. Consider its subgroup

$$SL_2(\mathbb{R}) = \{ A \in GL_2(\mathbb{R}) \mid \det(A) = 1 \}.$$

This group is the kernel of the determinant homomorphism

$$\det\colon GL_2(\mathbb{R})\to \mathbb{R}\setminus\{0\}.$$

Thus, since det is surjective (i.e., $Im(det) = \mathbb{R} \setminus \{0\}$), we deduce from the isomorphism theorem

$$GL_2(\mathbb{R})/SL_2(\mathbb{R}) \simeq \mathbb{R}\setminus\{0\}.$$