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Lecture 2
Reference: Judson, Chapter 2

Integers Z

Integer numbers not only form a set, but also have a rich algebraic structure. Our goal now is to formalize this
structure in an axiomatic way. This will allow us to prove results about integers which will be automatically
satisfied in a much wider setting.

Addition

Given two integers m,n ∈Z we can add the up: (m+n). Formally, we have a map

+: Z×Z→Z.

This map satisfies several familiar properties

G1 (associativity) Given arbitrary m,n,k ∈ Z, we have

(m+n) + k = m+ (n+ k);

G2 (neutral element). There exists a special element (zero) 0 ∈Z such that

0 +m = m+ 0 = m

for any m ∈ Z.

G3 (additive inverse). Given any n ∈Z there exists element (−n) ∈Z such that

n+ (−n) = (−n) +n = 0.

GC (commutativity). Given any m,n ∈Z we have

m+n = n+m.

The three properties G1, G2, G3, that is, associativity, existence of a neutral element and existence of inverses,
are characteristic of an important algebraic structure called a group. A group satisfying additionally property
GC is called a commutative (or abelian) group. The above shows that the set of integers (Z,+) endowed with
addition is a commutative group. We are going to see many other examples of groups in this course, and are
going to study groups in general.

Multiplication

Given two integers m,n ∈Z we can multiply them mn. That is we have a map

× : Z×Z→Z

(m,n) 7→mn

This map satisfies the following properties

R1 (associativity). For all m,n,k ∈Z we have

(mn)k = m(nk).

R2 (distributivity). For all m,n,k ∈Z we have

(m+n)k = mk +nk and k(m+n) = km+ kn.

R3 (neutral element). There exists a distinguished element 1 ∈Z such that for any m ∈Z we have

1m = m1 = m.

The properties G1, G2, G3, GC, R1 , R2 and R3 characterize an algebraic structure called a ring. In short,
a ring is a commutative group with an extra operation that is well-behaved with respect to the commutative
group operation.
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The Division Algorithm

Let us recall the notion of divisibility of integers and its basic properties.

Definition 1: Division

We say that nonzero number b ∈Z divides a ∈Z, if there exists q ∈Z such that

a = bq.

In this case we write b |a.

Clearly we have the following properties

• for any a ∈Z, a , 0 we have a|a;

• any integer divides 0;

• 0 does not divide any integer;

• if a|b and b|a, then a = ±b.

Given two integers we can divide one by the other with a remainder:

Theorem 1: Division Theorem

For any a ∈ Z and a nonzero b ∈ Z there exist unique q ∈ Z and a remainder r ∈ {0,1, . . . , |b| − 1} such
that

a = bq+ r.

Example 1

Dividing 7 by 2 with remainder we find
7 = 23 + 1,

i.e., q = 3 and r = 1.

Dividing 15 by −4 with remainder we find

15 = (−4)(−3) + 3,

i.e. q = −3 and r = 3.

Greatest Common divisor

For any a,b ∈Z such that a and b do not vanish simultaneously, we can define the greatest common divisor

gcd(a,b)

to be the largest integer d such that d|a and d|b. Clearly gcd(a,0) = |a|.
Our next goal is to develop an efficient algorithm for computing gcd(a,b) and derive important consequences
from it. In particular, we prove that if d′ is any common divisor of a and b, then d′ |gcd(a,b).
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Theorem 2: Euclidean algorithm

Given a pair a,b ∈ Z such that b , 0, define a sequence of numbers q1,q2,q3, . . . and r1, r2, r3, . . . as
follows.

1. divide a by b with remainder:
a = bq1 + r1.

2. if r1 = 0 stop. Otherwise divide b by r1 with remainder:

b = r1q2 + r2.

...

(k + 1). if rk = 0 stop. Otherwise divide rk−1 by rk with remainder:

rk−1 = rkqk+1 + rk+1.

The process stops at a step such that rN = 0. Then

gcd(a,b) = gcd(b,r1) = · · · = gcd(rN−1,0) = rN−1.

Proof. Let us analyze the first step of the algorithm. Identity

a = bq1 + r1

implies that the set of common divisors of a and b coincides with the set of common divisors of b and r1.
Indeed, any common divisor of a and b will divide r1 and vice versa: any common divisor of b and r1 will
divide a. In particular, since the sets of common divisors are the same:

gcd(a,b) = gcd(b,r1).

Proceeding the same way to the second and further steps of the algorithm we find that

gcd(a,b) = gcd(rN−1, rN ).

But since rN = 0, the latter equals rN−1.

Remark 1

In the course of proof we have shown that the set of common divisors of a and b coincides with the set
of divisors of rN−1 = gcd(a,b)

Besides providing an efficient way for computing greatest common divisor, Euclidean algorithm also is the key
tool in proving many fundamental statements in algebra and number theory. Most importantly, it implies the
following statement.

Proposition 1

Let a,b ∈ Z be a pair of integers, such that at least one of a and b is nonzero. Then there exist (not
unique!) integers u,v ∈Z such that

gcd(a,b) = au + bv.

Proof. We will prove this statement by applying Eucledian algorithm to the pair gcd(a,b). Traversing steps
of the algorithm backwards we prove that at every step

• There exist uk ,vk ∈Z such that
gcd(a,b) = rk−1uk + rkvk .

Indeed, it is obviously true at the last step, where rN−1 = gcd(a,b) and rN = 0, since we can take uN = 1 and
vN = 0.
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Now, going backwards, we have

gcd(a,b) = rk−1uk + rkvk
rk−2 = rk−1qk + rk .

Substituting rk from the second equation to the first equation, we find

gcd(a,b) = rk−1uk + (rk−2 − rk−1qk)vk = rk−2 vk︸︷︷︸
:=uk−1

+rk−1 (uk − qkvk)︸      ︷︷      ︸
:=vk−1

.

Continuing the process all the way up to a and b we prove the proposition.

Proposition 1 has two important corollaries.

Corollary 1

Numbers a,b ∈Z are coprime (i.e., gcd(a,b) = 1) if and only if there exist u,v ∈Z such that

au + bv = 1

Proof. One direction is exactly the statement of Proposition 1. The other direction is obvious, since given
u and v as in the identity, we find that any common divisor of a and b must also divide 1, so that a and b
must be coprime.

Corollary 2

Given numbers a,b,c ∈Z such that a | (bc) and gcd(a,b) = 1 we must have

a |c.

Proof. Since gcd(a,b) = 1, by the above corollary we can find u,v ∈Z such that

au + bv = 1,

in particular
acu + bcv = c.

The first summand on the left hand side is obviously divisible by a (since a is one of the factor). The second
summand is also divisible by a, since it has a factor bc which is divisible by a by assumption. Therefore the
right hand side c is also divisible by a as stated.
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