Lecture 4

Reference: Judson, Chapter 2

Congruence relations and \mathbb{Z}_{n}.

Throughout this section let us fix a positive integer $n \in \mathbb{Z}$ (to get reasonable examples further on it is natural to assume also that $n>1$).

Definition 1: Congruence relation modulo n

Given fixed nonzero n, let us introduce an equivalence relation on \mathbb{Z} as follows:

$$
a \sim b \Longleftrightarrow n \mid(a-b),
$$

i.e., a is equivalent to b if and only if their difference if divisible by n. In this case we will write

$$
a \equiv b \quad \bmod n
$$

' a is equivalent to b modulo n '.

Problem 1: Verify that this is an equivalence relation.

The equivalence class modulo this equivalence relation is called a congruence class. Clearly numbers a and b are in the same congruence class if and only if a and b have the same remainder under division by b, so that the set of equivalence classes is

$$
(\mathbb{Z} / \sim)=\{[0],[1], \ldots,[n-1]\},
$$

where

$$
[a]=\{a+n k \mid k \in \mathbb{Z}\}=a+n \mathbb{Z}
$$

We will use a special notation for the set of equivalence classes \mathbb{Z} / \sim and denote it

$$
\mathbb{Z}_{n}:=\{[0],[1], \ldots,[n-1]\}
$$

to keep track of our choice of n. Another commonly used notation is $\mathbb{Z} / n \mathbb{Z}$.

Arithmetics in \mathbb{Z}_{n}

So far \mathbb{Z}_{n} is only a set consisting of n elements. Our next goal is to introduce addition and multiplication operations on \mathbb{Z}_{n}. To this end we will need a simple lemma.

Lemma 1

If $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$, then

$$
\begin{aligned}
(a+b) & \equiv\left(a^{\prime}+b^{\prime}\right) \quad \bmod n \\
a b & \equiv a^{\prime} b^{\prime} \quad \bmod n
\end{aligned}
$$

Proof. We will prove the claim about multiplication. The claim about addition is proved similarly (and is a good exercise).
From the assumptions of the lemma, of know that

$$
a^{\prime}=a+k n \quad b^{\prime}=b+\ln
$$

for some $k, l \in \mathbb{Z}$. Therefore the difference

$$
a^{\prime} b^{\prime}-a b=(a+k n)(b+\ln)-a b=k n b+\ln a+k \ln ^{2}=n(a b+l a+k l n)
$$

is clearly divisible by n, so that $a^{\prime} b^{\prime} \equiv a b \bmod n$.

This lemma allows us introduce addition and multiplication on \mathbb{Z}_{n} as follows.

Definition 2

Given two congruence classes $[a]$ and $[b]$ in \mathbb{Z}_{n} we choose representatives $a \in[a]$ and $b \in[b]$ and introduce an operation \oplus

$$
[a] \oplus[b]:=[a+b]
$$

and an operation \odot

$$
[a] \odot[b]:=[a b]
$$

The above lemma ensures that this definition is correct, i.e., if we had chosen different representatives $a^{\prime} \in[a]$ and $b^{\prime} \in[b]$, we would get the same congruence classes as the results of \oplus and \odot operations. Operations \oplus and \odot satisfy all the axioms G1, G2, G3, GC, R1, R2, R3, i.e.:

G1 \oplus is associative
G2 \oplus has neutral element [0]
G3 [a] has additive inverse $[-a]$
GC \oplus is commutative
R1 \odot is associative
R2 \odot is distributive with respect to \oplus
R3 \odot has neutral element [1],
which means that the pair $\left(\mathbb{Z}_{n}, \oplus\right)$ is a commutative group and the triple $\left(Z_{n}, \oplus, \odot\right)$ is a ring.
For this lecture we will keep notations [a] to denote an element of \mathbb{Z}_{n} and write \oplus and \odot for addition and multiplication to underline that these are new elements and new operations. However, from the next lecture on, we will write just $a,+$, and simply add $(\bmod n)$, if we are considering those in \mathbb{Z}_{n}.

Example 1

In \mathbb{Z}_{5} we have

$$
[1] \oplus[4]=[0]
$$

and

$$
[4] \odot[4]=[1] .
$$

Problem 2: Find all elements in \mathbb{Z}_{16} such that $[a] \odot[a]=[1]$.
Multiplication in \mathbb{Z}_{n} has several new features, which are not present in \mathbb{Z}.

Example 2

In \mathbb{Z}_{7} we have $[3] \odot[5]=[1]$. For this reason, [5] plays the same role as the number $1 / 3$ in \mathbb{Q}, i.e., it is multiplicative inverse for 3 .
For instance, if we want to solve equation

$$
[3] \odot y=[5]
$$

in \mathbb{Z}_{7}, we can multiply both sides with [5] (which will have the same effect as division by [3]), and get

$$
[5] \odot[3] \odot y=[5] \odot[5]
$$

Using the fact that $[5] \odot[3]=[1]$ and $[5] \odot[5]=[25]=[4]$ in \mathbb{Z}_{7} we conclude

$$
y=[4] .
$$

Example 3

In \mathbb{Z}_{6} the product of two nonzero elements might be zero:

$$
[2] \odot[3]=[6]=[0] \quad \text { in } \mathbb{Z}_{6} .
$$

The above example motivates us to introduce the following notion.

Definition 3

Congruence class [a] in \mathbb{Z}_{n} is called a unit (or multiplicatively invertible), if there exists a congruence class [b] such that

$$
[a] \odot[b]=[1] .
$$

Problem 3: Prove that multiplicative inverse, if exists, unique.

Example 4

In \mathbb{Z}_{6} congruence classes [1],[5] are invertible

$$
[1] \odot[1]=[1], \quad[5] \odot[5]=[1]
$$

while the remaining classes are not invertible (why?).

NB 1: Caution! In general in \mathbb{Z}_{n} one can not cancel nonzero factors from both sides of an identity, for example in \mathbb{Z}_{6}

$$
[2] \odot[3]=[0]=[2] \odot[0]
$$

while

$$
[3] \neq[0] .
$$

In the next lecture we will give necessary and sufficient condition under which we can cancel factor [a] in \mathbb{Z}_{n}.

