Lecture 4

Reference: Judson, Chapter 2

Congruence relations and \mathbb{Z}_n .

Throughout this section let us fix a positive integer $n \in \mathbb{Z}$ (to get reasonable examples further on it is natural to assume also that n > 1).

Definition 1: Congruence relation modulo *n*

Given fixed nonzero n, let us introduce an equivalence relation on \mathbb{Z} as follows:

 $a \sim b \iff n \mid (a - b),$

i.e., a is equivalent to b if and only if their difference if divisible by n. In this case we will write

 $a \equiv b \mod n$

'a is equivalent to *b* modulo *n'*.

Problem 1: Verify that this is an equivalence relation.

The equivalence class modulo this equivalence relation is called a *congruence class*. Clearly numbers a and b are in the same congruence class if and only if a and b have the same remainder under division by b, so that the set of equivalence classes is

$$(\mathbb{Z}/\sim) = \{[0], [1], \dots, [n-1]\},\$$

where

 $[a] = \{a + nk \mid k \in \mathbb{Z}\} = a + n\mathbb{Z}.$

We will use a special notation for the set of equivalence classes \mathbb{Z}/\sim and denote it

$$\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$$

to keep track of our choice of *n*. Another commonly used notation is $\mathbb{Z}/n\mathbb{Z}$.

Arithmetics in \mathbb{Z}_n

So far \mathbb{Z}_n is only a set consisting of *n* elements. Our next goal is to introduce addition and multiplication operations on \mathbb{Z}_n . To this end we will need a simple lemma.

Lemma 1

If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then

 $(a+b) \equiv (a'+b') \mod n$

 $ab \equiv a'b' \mod n.$

Proof. We will prove the claim about multiplication. The claim about addition is proved similarly (and is a good exercise).

From the assumptions of the lemma, of know that

$$a' = a + kn$$
 $b' = b + ln$

for some $k, l \in \mathbb{Z}$. Therefore the difference

$$a'b' - ab = (a + kn)(b + ln) - ab = knb + lna + kln^{2} = n(ab + la + kln)$$

is clearly divisible by *n*, so that $a'b' \equiv ab \mod n$.

This lemma allows us introduce addition and multiplication on \mathbb{Z}_n as follows.

Definition 2	
Given two congruence classes $[a]$ and $[b]$ in \mathbb{Z}_n we choose <i>representatives</i> $a \in [a]$ and $b \in [b]$ and introduce an operation \oplus	
	$[a] \oplus [b] := [a+b]$
and an operation \odot	$[a] \odot [b] := [ab].$

The above lemma ensures that this definition is *correct*, i.e., if we had chosen different representatives $a' \in [a]$ and $b' \in [b]$, we would get the same congruence classes as the results of \oplus and \odot operations. Operations \oplus and \odot satisfy all the axioms **G1**, **G2**, **G3**, **GC**, **R1**, **R2**, **R3**, i.e.:

- G1 \oplus is associative
- G2 \oplus has neutral element [0]
- G3 [a] has additive inverse [-a]
- $GC \oplus is commutative$
- R1 \odot is associative
- R2 $\,\odot\,$ is distributive with respect to $\oplus\,$
- R3 \odot has neutral element [1],

which means that the pair (\mathbb{Z}_n, \oplus) is a *commutative group* and the triple (Z_n, \oplus, \odot) is a *ring*.

For this lecture we will keep notations [a] to denote an element of \mathbb{Z}_n and write \oplus and \odot for addition and multiplication to underline that these are new elements and new operations. However, from the next lecture on, we will write just *a*, +, and simply add (mod *n*), if we are considering those in \mathbb{Z}_n .

Example 1

In \mathbb{Z}_5 we have

and

 $[1] \oplus [4] = [0]$ $[4] \odot [4] = [1].$

Problem 2: Find all elements in \mathbb{Z}_{16} such that $[a] \odot [a] = [1]$.

Multiplication in \mathbb{Z}_n has several new features, which are not present in \mathbb{Z} .

Example 2

In \mathbb{Z}_7 we have $[3] \odot [5] = [1]$. For this reason, [5] plays the same role as the number 1/3 in \mathbb{Q} , i.e., it is multiplicative inverse for 3.

For instance, if we want to solve equation

$$[3] \odot y = [5]$$

in \mathbb{Z}_7 , we can multiply both sides with [5] (which will have the same effect as division by [3]), and get

$$[5] \odot [3] \odot y = [5] \odot [5].$$

Using the fact that $[5] \odot [3] = [1]$ and $[5] \odot [5] = [25] = [4]$ in \mathbb{Z}_7 we conclude

y = [4].

Example 3

In \mathbb{Z}_6 the product of two nonzero elements might be zero:

 $[2] \odot [3] = [6] = [0]$ in \mathbb{Z}_6 .

The above example motivates us to introduce the following notion.

Definition 3

Congruence class [a] in \mathbb{Z}_n is called a *unit* (or *multiplicatively invertible*), if there exists a congruence class [b] such that

 $[a] \odot [b] = [1].$

Problem 3: Prove that multiplicative inverse, if exists, unique.

Example 4

In \mathbb{Z}_6 congruence classes [1], [5] are invertible

$$[1] \odot [1] = [1], [5] \odot [5] = [1]$$

while the remaining classes are not invertible (why?).

NB 1: Caution! In general in \mathbb{Z}_n one can not cancel nonzero factors from both sides of an identity, for example in \mathbb{Z}_6

while

 $[2] \odot [3] = [0] = [2] \odot [0]$

[3] ≠ [0].

In the next lecture we will give necessary and sufficient condition under which we can cancel factor [a] in \mathbb{Z}_n .