Lecture 5

Reference: Judson, Chapters 3.1

Units in \mathbb{Z}_n

Recall that \mathbb{Z}_n is the set of congruence classes modulo *n*.

Remark 1: Convention on notation

Given a fixed integer *n* we will often identity an integer number $a \in \mathbb{Z}$ with the corresponding congruence class in \mathbb{Z}_n . For example we will write

 $5 \in \mathbb{Z}_7$

assuming the congruence class of integers [5] modulo 7. In particular we can write

```
5 = 19 in Z<sub>7</sub>
```

since 5 and 19 belong to the same congruence class. This allows us, by abuse of notation, write

$$\mathbb{Z}_n = \{0, 1, 2..., n-1\}$$

instead of the formally correct

 $\mathbb{Z}_n = \{[0], [1], [2], \dots, [n-1]\}$

An element $k \in \mathbb{Z}_n$ is called a *unit*, if there exists an element $l \in \mathbb{Z}_n$ such that

 $k \cdot l = 1$ in \mathbb{Z}_n .

The following theorem provide a complete characterization of units in \mathbb{Z}_n .

Theorem 1: Characterization of units in \mathbb{Z}_n

Let $n \ge 2$ be an integer. The set of units in \mathbb{Z}_n (denoted \mathbb{Z}_n^{\times}) consists of all congruence class of integers coprime to n:

$$\mathbb{Z}_n^{\times} = \{k \in \mathbb{Z}_n \mid \gcd(n, k) = 1\}$$

Proof. Let $k \in \{0, ..., n-1\}$. 1. If gcd(n,k) = 1, then by the theorem from the previous week, we can find integers $u, v \in \mathbb{Z}$ such that

$$nu + kv = 1.$$

 $k \cdot v \equiv 1 \mod n$

Therefore, in \mathbb{Z}_n we have

so that [v] is the multiplicative inverse of [k] in \mathbb{Z}_n .

2. Conversely, if we can find a multiplicative inverse to $[k] \in \mathbb{Z}_n$:

$$k \cdot l \equiv 1 \mod n,$$

then any common divisor of k and n would also divide 1, so necessarily gcd(n, k) = 1.

Example 1

In \mathbb{Z}_6 the only units are 1 and 5 = -1.

Definition 1

Given integer $n \ge 2$, define *Euler's function* $\varphi(n)$ to be the number of integers in $\{1, ..., n-1\}$ which a coprime with *n*.

In other words,

 $|\mathbb{Z}_n^{\times}| = \varphi(n).$

Problem 1: Number *n* is prime, if and only if $\varphi(n) = n - 1$.

Groups

Laws of composition

Let *S* be an arbitrary set.

Definition 2: Law of composition

A law of composition (or binary operation) on S is a function

 $S \times S \rightarrow S$

which assigns to any pair $(x, y) \in S \times S$ an element $x * y \in S$. (Instead of x * y often we will write $x \cdot y$, or even xy)

Example 2

Addition and multiplication are composition laws on \mathbb{Z} . Division is not a composition law on \mathbb{R} , since x/0 is not defined. However, it is a composition law on $\mathbb{R}\setminus\{0\}$.

Example 3: Important example

Let *X* be an arbitrary set, and consider

 $S = \mathcal{F}(X, X)$

to be the set of all maps $f: X \to X$. Given a pair of maps $f, g \in \mathcal{F}(X, X)$, we can take their composition and obtain an element $f \circ g \in \mathcal{F}(X, X)$. Hence, the composition of maps defines a *law of composition* on $\mathcal{F}(X, X)$ (thus the name).

Definition 3

Let

 $S \times S \to S$

 $(x, y) \mapsto x * y$

be a law of composition on S. We say that * is

• *associative*, if for any $x, y, z \in S$ we have

$$(x * y) * z = x * (y * z).$$

• *commutative*, if for any $x, y \in S$

x * y = y * x.

If the law of composition is associative, given $x_1, \ldots, x_n \in S$, it makes sense to write just

 $x_1 * x_2 * \cdots * x_k$

without any brackets.

Traditionally, we drop the symbol * and denote a law of composition by $(x, y) \mapsto xy$ (this is called the multiplicative notation), but if it happens to be commutative, the additive notation $(x, y) \mapsto x + y$ may be used. For the moment, for clarity, we will keep using the symbol *.

Definition 4

Let (S, *) be a set with a composition law. We say that $e \in S$ is an *identity* (or *neutral element*) if for all $x \in S$ we have

x * e = e * x = x.

Problem 2: Any law of composition has at most one identity element. Hint: given two identities e, e' consider e * e'.

Definition 5

Let (S, *) be a set with a composition law with an identity *e*. We say that $y \in S$ is *invertible* if there exists $x \in S$ such that

x * y = y * x = e.

The inverse of *y* is denoted by y^{-1} . Clearly, *e* is invertible with $e^{-1} = e$.

Proposition 1

Let (S, *) be a set with an associative composition law and identity. Let $x, y \in S$ be two invertible elements, then x * y is also invertible with $(x * y)^{-1} = y^{-1} * x^{-1}$

Proof. Indeed, we have

$$(x * y) * (y^{-1} * x^{-1}) = x * (y * y^{-1}) * x^{-1} = x * e * x^{-1} = x * x^{-1} = e$$

where in the first equality we used associativity, in the second the fact that y^{-1} is the inverse of y, in the third the property of the identity e, and in the last the fact that x^{-1} is the inverse of x. Similarly we check that $(y^{-1} * x^{-1}) * (x * y) = e$ which proves that $(y^{-1} * x^{-1}) = (x * y)^{-1}$.

Example 4: Key motivating example

Let Δ be an equilateral triangle. Then it has 6 symmetries:

- 3 rotations by 0° , 120° and 240° (denote them τ_0, τ_1, τ_2)
- 3 reflections along 3 altitudes (denote them by $\sigma_1, \sigma_2, \sigma_3$).

We claim that the composition operation on the set { τ_0 , τ_1 , τ_2 , σ_1 , σ_2 , σ_3 } defines a law of composition (exercise).

Problem 3: Prove that the above law of composition is associative, has an identity and every element admits an inverse.

Definition of a group

Definition 6

Let (G, *) be a set with a law of composition. We will say that (G, *) si a group if the following properties hold:

- * is associative
- there is an identity $e \in G$
- every element $x \in G$ is invertible.