Lecture 6

Reference: Judson, Chapter 3.2

Groups

Last time we have introduced *laws of composition* (S, *) and defined what it means for * to be associative/commutative and to admit an identity.

Compare the following proposition to problem #5 from the first homework.

Proposition 1

Let (S,*) be a set with an associative composition law and identity. Let $x, y \in S$ be two invertible elements, then x * y is also invertible with $(x * y)^{-1} = y^{-1} * x^{-1}$

Proof. Indeed, we have

$$(x * y) * (y^{-1} * x^{-1}) = x * (y * y^{-1}) * x^{-1} = x * e * x^{-1} = x * x^{-1} = e$$

where in the first equality we used associativity, in the second the fact that y^{-1} is the inverse of y, in the third the property of the identity e, and in the last the fact that x^{-1} is the inverse of x. Similarly we check that $(y^{-1} * x^{-1}) * (x * y) = e$ which proves that $(y^{-1} * x^{-1}) = (x * y)^{-1}$.

Definition of a group

Groups is one of the most fundamental notions in mathematics. Whenever you have an object (of any nature) admitting *symmetries*, there is a group lurking behind.

Example 1: Key motivating example

Let Δ be an equilateral triangle. Then there 6 rigid motions mapping Δ onto itself, i.e., bijections $f: \Delta \rightarrow \Delta$ preserving the distances between points:

- 3 rotations by 0°, 120° and 240° (denote them μ_0, μ_1, μ_2)
- 3 reflections along 3 altitudes l_1, l_2, l_3 (denote the reflection by $\sigma_1, \sigma_2, \sigma_3$).

We claim that the composition operation on the set { $\mu_0, \mu_1, \mu_2, \sigma_1, \sigma_2, \sigma_3$ } defines a law of composition (exercise).

Problem 1: Prove that the above law of composition is associative, has an identity and every element admits an inverse. Show that it is **not** commutative.

Definition 1

Let (G, *) be a set with a law of composition. We will say that (G, *) is a group if the following properties hold:

(G1) * is associative

(G2) there is an identity $e \in G$

(G3) every element $x \in G$ is invertible.

Definition 2

A group (*G*, *) is *commutative* or *abelian* if * is commutative.

Proposition 2: Cancellation law

If (G, *) is a group and $x, y, z \in G$ are elements such that

x * y = x * z,

then y = z, i.e., we can cancel out *x* from the both sides.

Proof. Let us multiply both sides of the above identity by x^{-1} *from the left.* Then we will have

 $x^{-1} * x * y = x^{-1} * x * z.$

Due to associativity we do not have to specify the brackets and can perform multiplication in any order we like (without swapping the elements). Then on both sides we have $x^{-1} * x = e$, so

e * y = e * z

Now, due to the definition of *e*, we have y = z.

Remark 1 For $n \in \mathbb{Z}$ we will write $x^n := \underbrace{x * x * \dots * x}_{n \text{ times}}$ if n > 0 and $x^n := \underbrace{(x * x * \dots * x)^{-1}}_{-n \text{ times}}$ if n < 0. As usual, $x^0 = e$. Check that for $n, m \in \mathbb{Z}$ we have $(x^n)^m = (x^m)^n = x^{nm}$.

To feel better the notion of a group we will need to stock on examples.

Example 2

 $(\mathbb{Z}, +)$, integers under addition form a group with the neutral element being 0. (\mathbb{Z}, \times) is **not** a group, since 2 does not have a multiplicative inverse in (\mathbb{Z}, \times) . (\mathbb{R}, \times) is **not** a group, since 0 does not have a multiplicative inverse. $(\mathbb{R}\setminus\{0\}, \times)$ is a group with neutral element being 1. $(\mathbb{Z}_n, +)$ is a group with neutral element [0]. (\mathbb{Z}_n, \times) is **not** a group since [0] does not have a multiplicative inverse, however, similarly to the example of $(\mathbb{R}\setminus\{0\}, \times)$, we find that the set of units $(\mathbb{Z}_n^{\times}, \times)$ is a group.

All of the above groups are commutative.