Lecture 6

Reference: Judson, Chapter 3.2

Groups

Last time we have introduced laws of composition $(S, *)$ and defined what it means for * to be associative/commutative and to admit an identity.
Compare the following proposition to problem \#5 from the first homework.

Proposition 1

Let $(S, *)$ be a set with an associative composition law and identity. Let $x, y \in S$ be two invertible elements, then $x * y$ is also invertible with $(x * y)^{-1}=y^{-1} * x^{-1}$

Proof. Indeed, we have

$$
(x * y) *\left(y^{-1} * x^{-1}\right)=x *\left(y * y^{-1}\right) * x^{-1}=x * e * x^{-1}=x * x^{-1}=e
$$

where in the first equality we used associativity, in the second the fact that y^{-1} is the inverse of y, in the third the property of the identity e, and in the last the fact that x^{-1} is the inverse of x.
Similarly we check that $\left(y^{-1} * x^{-1}\right) *(x * y)=e$ which proves that $\left(y^{-1} * x^{-1}\right)=(x * y)^{-1}$.

Definition of a group

Groups is one of the most fundamental notions in mathematics. Whenever you have an object (of any nature) admitting symmetries, there is a group lurking behind.

Example 1: Key motivating example

Let Δ be an equilateral triangle. Then there 6 rigid motions mapping Δ onto itself, i.e., bijections $f: \Delta \rightarrow \Delta$ preserving the distances between points:

- 3 rotations - by $0^{\circ}, 120^{\circ}$ and 240° (denote them $\mu_{0}, \mu_{1}, \mu_{2}$)
- 3 reflections along 3 altitudes l_{1}, l_{2}, l_{3} (denote the reflection by $\sigma_{1}, \sigma_{2}, \sigma_{3}$).

We claim that the composition operation on the set $\left\{\mu_{0}, \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ defines a law of composition (exercise).

Problem 1: Prove that the above law of composition is associative, has an identity and every element admits an inverse. Show that it is not commutative.

Definition 1

Let $(G, *)$ be a set with a law of composition. We will say that $(G, *)$ is a group if the following properties hold:
(G1) * is associative
(G2) there is an identity $e \in G$
(G3) every element $x \in G$ is invertible.

Definition 2

A group $(G, *)$ is commutative or abelian if $*$ is commutative.

Proposition 2: Cancellation law

If $(G, *)$ is a group and $x, y, z \in G$ are elements such that

$$
x * y=x * z
$$

then $y=z$, i.e., we can cancel out x from the both sides.

Proof. Let us multiply both sides of the above identity by x^{-1} from the left. Then we will have

$$
x^{-1} * x * y=x^{-1} * x * z
$$

Due to associativity we do not have to specify the brackets and can perform multiplication in any order we like (without swapping the elements). Then on both sides we have $x^{-1} * x=e$, so

$$
e * y=e * z
$$

Now, due to the definition of e, we have $y=z$.

Remark 1

For $n \in \mathbb{Z}$ we will write

$$
x^{n}:=\underbrace{x * x * \cdots * x}_{n \text { times }}
$$

if $n>0$ and

$$
x^{n}:=(\underbrace{x * x * \cdots * x}_{-n \text { times }})^{-1}
$$

if $n<0$. As usual, $x^{0}=e$.
Check that for $n, m \in \mathbb{Z}$ we have $\left(x^{n}\right)^{m}=\left(x^{m}\right)^{n}=x^{n m}$.

To feel better the notion of a group we will need to stock on examples.

Example 2

$(\mathbb{Z},+)$, integers under addition form a group with the neutral element being 0 .
(\mathbb{Z}, \times) is not a group, since 2 does not have a multiplicative inverse in (\mathbb{Z}, \times).
(\mathbb{R}, \times) is not a group, since 0 does not have a multiplicative inverse.
$(\mathbb{R} \backslash\{0\}, \times)$ is a group with neutral element being 1 .
$\left(\mathbb{Z}_{n},+\right)$ is a group with neutral element [0].
$\left(\mathbb{Z}_{n}, \times\right)$ is not a group since [0] does not have a multiplicative inverse, however, similarly to the example of $(\mathbb{R} \backslash\{0\}, \times)$, we find that the set of units $\left(\mathbb{Z}_{n}^{\times}, \times\right)$is a group.

All of the above groups are commutative.

