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Lecture 7
Reference: Judson, Chapter 3.3 & 4.1

Groups

Last time we have introduced a notion of a group (G,∗). In a certain sense which we make precise later in the
course, the following example is an ultimate source of all groups.

Example 1

Let X be an arbitrary set. Consider
B(X,X) ⊂ F (X,X)

the set of all bijections from X to itself X.
Since the composition of bijections is a bijection, we have a set with a composition law:

(B(X,X),◦).

• This composition law is trivially associative, since the composition of functions is always associa-
tive

• B(X,X) also admits a neutral element with respect to ◦— the identity map idX ∈ B(X,X).

Now, the point of considering only bijections among all maps X → X, is that a bijection f : X → X
always admits an inverse f −1 : X → X which makes (B(X,X),◦) a group. Some of you might have seen
this group under the disguise of permutation group of X.

Remark 1

The group of bijections is not commutative, unless the set X consists of 6 2 elements.

Cayley tables

If G is finite set consisting of |G| elements, and we want to specify a composition law on G, the most straight-
forward way is to use a Cayley table. This is a table of size |G| × |G|, with rows and columns labeled by elements
of G.

To fill out Cayley table, in the cell at the intersection of a row of element x ∈ G and of a column of element
y ∈ G we record their composition x ∗ y.

∗ . . . y . . .
...

...
x . . . x ∗ y . . .
...

...

Given a Cayley table of (G,∗) we can read off all the possible compositions of all the pairs of elements of G.

Problem 1: If (G,∗) is a group, then every column (resp. row) of its Cayley table contains every element
exactly once.
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Example 2

Let X = {A,B,C} and consider the set of bijections B(X,X). Any bijection would permute elements
A,B,C. To define a bijection we have to specify the image of A (3 choices), the image of B (only 2 choice
left), and the image of C will be determined uniquely. Therefore we will have exactly 3×2 = 6 bijections.
If f : {A,B,C} → {A,B,C} is a bijection, we will represent it as a 2× 3 matrix:

f =
(

A B C
f (A) f (B) f (C)

)
We have the following 6 bijections:

idX =
(
A B C
A B C

)
τ1 :=

(
A B C
A C B

)
τ2 :=

(
A B C
C B A

)
τ3 :=

(
A B C
B A C

)
µ1 :=

(
A B C
B C A

)
µ2 :=

(
A B C
C A B

)

So G = B(X,X) is
G = {idX , τ1, τ2, τ3,µ1,µ2}

To finish description of the group (G,◦) it remain to construct the (multiplication) Cayley table.

Since each of τ1, τ2, τ3 just swaps two elements, we find that τi ◦ τi = idX .

Also, it is easy to see that µ2
1 = µ2 and µ3

1 = idX . The latter implies that

µ−1
2 = µ1

Therefore µ2 = µ−1
1 , and since (µ−1

1 )3 = idX , we see that

µ3
2 = idX

To see that group (G,◦) is not commutative, we consider

τ1 ◦ τ2 and τ2 ◦ τ1.

Let us find out how map τ1 ◦ τ2 : X→ X acts on A,B,C:

(τ1 ◦ τ2)(A) = τ1(τ2(A)) = τ1(C) = B

(τ1 ◦ τ2)(B) = τ1(τ2(B)) = τ1(B) = C

(τ1 ◦ τ2)(C) = τ1(τ2(C)) = τ1(A) = A

So we see that τ1 ◦ τ2 = µ1.

Problem 2: Check hat τ2◦τ1 = µ2(, µ1). This is a manifestation of the fact that (G,◦) is not commutative.

So far we have essentially computed the following entries of the Cayley table (see below)

(The first row and column just reflect the fact that idX is a neutral element)

◦ idX τ1 τ2 τ3 µ1 µ2

idX idX τ1 τ2 τ3 µ1 µ2
τ1 τ1 idX µ1
τ2 τ2 µ2 idX
τ3 τ3 idX
µ1 µ1 µ2 idX
µ2 µ2 idX µ1

Part of the Cayley table of B(X,X), X = {A,B,C}
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Remark 2

From the known compositions, we can formally find, for example, µ2 ◦ τ1:

τ2 ◦ τ1 = µ2⇒ τ2 ◦ τ1 ◦ τ1 = µ2 ◦ τ1⇒ τ2 = µ2 ◦ τ1.

Problem 3: Fill in the remaining entries of the table. Check that the product of two τ’s is either identity
of µ, and the product of a τ and a µ is always a µ.

Subgroups

Let (G,∗) be a group. Often we would like to understandG by considering subsets which themselves are groups
with respect to ∗. To this end we need the following definition.

Definition 1: S

bset H ⊂ G is called a subgroup if it satisfies the following properties:

• e ∈H ;

• if x,y ∈H , then x ∗ y ∈H ;

• if x ∈H , then x−1 ∈H .

Clearly (H,∗) is itself a group.

Problem 4: Prove that a subset H ⊂ G satisfying

• if x,y ∈H , then (x−1) ∗ y ∈H ,

is a subgroup.

Example 3: Obvious subgroups

Any group (G,∗) has two obvious subgroups:

1. H = {e} (trivial subgroup)

2. H = G.

If subgroup H is neither of the above, we will say that H ⊂ G is a proper subgroup.

Example 4

Group (Z3,+) does not have any subgroups besides {0} and Z3.
Indeed, we have Z3 = {[0], [1], [2]}. If H ∈ Z3 is a nontrivial subgroup, then either [1] ∈ H or [2] ∈ H . If
[1] ∈H , then by the second property −[1] = [2] ∈H and H = Z3.

Remark 3

If H ⊂ G is a subgroup, and h ∈H is an element in H , then for any integer m ∈H we also have hm ∈H .
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Example 5

Let (Z×7 ,×) be the set of units (i.e., elements admitting multiplicative inverse) in Z7 under multiplica-
tion operation. In this group we have a subgroup

H = {[1], [6]}.

Indeed, since [6]× [6] = [36] = [1], this subset satisfies all the properties of a subgroup.
There is another proper subgroup in (Z×7 ,×):

K = {[1], [2], [4]}.

Problem 5: Prove that subset K ⊂Z
×
7 satisfies all the properties of a subgroup.

Example 6

Consider group (Z,+). Then for any fixed nonzerom ∈Z there is a subgroup of elements divisible bym

mZ := {k ·m | k ∈Z} ⊂Z.

It turns out that the above example provides an exhaustive list of subgroups of (Z,+). Specifically, we have the
following theorem:

Theorem 1

Let H ⊂Z be a subgroup with respect to addition. Then either H is trivial:

H = {0}

or H is of the form
H =mZ

for some fixed nonzero m ∈Z.

Proof. Assume that H is nontrivial. Then we have some nonzero integer a ∈ H . By subgroup property, we
also have −a ∈H , hence there is at least one positive integer in H .
Let m be the smallest positive integer in H . We claim that H =mZ.
1. mZ ⊂ H : Since m ∈ H , by subgroup properties, we have −m ∈ H , 2m = m+m ∈ H , and, more generally,
for any k ∈Z we have k ·m ∈H . This proves mZ ⊂H .
2. H ⊂mZ. Let us take any element a ∈H . We claim that a is divisible by m without remainder.
Indeed, let us divide a by m with remainder:

a =m · q+ r, r ∈ {0,1, . . . ,m− 1}.

Since a ∈H and m ∈H , by subgroup properties we have

a− k ·m ∈H

for any k ∈Z. In particular taking k = q we conclude that

r ∈H.

But m is the smallest positive element of H , therefore r must be 0.
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