Lecture 8

Reference: Judson, Chapter 4.1

Subgroups

Recall the following fundamental example of a subgroup.

Example 1

Consider group (\mathbb{Z} , +). Then for any fixed nonzero $m \in \mathbb{Z}$ there is a subgroup of elements divisible by m

 $m\mathbb{Z} := \{k \cdot m \mid k \in \mathbb{Z}\} \subset \mathbb{Z}.$

It turns out that the above example provides an exhaustive list of subgroups of $(\mathbb{Z}, +)$. Specifically, we have the following theorem:

Theorem 1

Let $H \subset \mathbb{Z}$ be a subgroup with respect to addition. Then either *H* is trivial:

 $H = \{0\}$

or H is of the form

 $H=m\mathbb{Z}$

for some fixed nonzero $m \in \mathbb{Z}$.

Proof. Assume that *H* is nontrivial. Then we have some nonzero integer $a \in H$. By subgroup property, we also have $-a \in H$, hence there is at least one positive integer in *H*.

Let *m* be the smallest positive integer in *H*. We claim that $H = m\mathbb{Z}$. **1.** $m\mathbb{Z} \subset H$: Since $m \in H$, by subgroup properties, we have $-m \in H$, $2m = m + m \in H$, and, more generally,

for any $k \in \mathbb{Z}$ we have $k \cdot m \in H$. This proves $m\mathbb{Z} \subset H$.

2. $H \subset m\mathbb{Z}$. Let us take any element $a \in H$. We claim that *a* is divisible by *m* without remainder. Indeed, let us divide *a* by *m* with remainder:

 $a = m \cdot q + r, \quad r \in \{0, 1, \dots, m-1\}.$

Since $a \in H$ and $m \in H$, by subgroup properties we have

 $a - k \cdot m \in H$

for any $k \in \mathbb{Z}$. In particular taking k = q we conclude that

 $r \in H$.

But m is the smallest positive element of H, therefore r must be 0.

Cyclic subgroups

As usual, let (G, *) be any abstract group. Before we introduce the notion of a cyclic subgroup let us make a trivial remark:

Remark 1

If we have a subgroup $H \subset G$ and an element $a \in H$, then for any $k \in \{1, 2, 3, ...\}$ we also have

$$a^k := \underbrace{a * \cdots * a}_{k \text{ times}} \in H.$$

Similarly, since necessarily $a^{-1} \in H$, we also have

 $a^{-k} \in H.$

Also $a^0 = e \in H$, therefore we can write

 $\{a^k \mid k \in \mathbb{Z}\} \subset H$

and this is true for any subgroup $H \subset G$ containing *a*.

Problem 1: Subset $\{a^k \mid k \in \mathbb{Z}\} \subset G$ is itself a subgroup.

This remark motivates the following definition.

Definition 1: Cyclic subgroup

A subgroup *H* of (G, *) is called *cyclic*, if there exists an element $a \in G$ such that

 $H = \{a^k \mid k \in \mathbb{Z}\} \subset G.$

Element *a* is called a *generator* of a cyclic subgroup.

Remark 2

Generator of a cyclic subgroup is not unique. For example, both [1] and [2] in \mathbb{Z}_3 generate the whole group (\mathbb{Z}_3 ,+).

NB 1: In the presentation $\{a^k \mid k \in \mathbb{Z}\}$ some elements might coincide, so that possibly $a^l = a^n$ for some pairs $l, n \in \mathbb{Z}$.

Example 2

Consider group $(\mathbb{Z}_7^{\times}, \times)$ and an element $3 \in \mathbb{Z}_7^{\times}$. Consider elements 3, 3^2 , 3^3 ,... in \mathbb{Z}_7^{\times} :

 3^{0} , 3, 3^{2} , 3^{3} , 3^{4} , 3^{5} , 3^{6} , 3^{7} , 3^{8} , ... 1, 3, 2, 6, 4, 5, 1, 3, 2, ...

As we can see, elements in the bottom row repeat cyclically with period 6.

Problem 2: Do the same calculation for $2 \in \mathbb{Z}_7^{\times}$ and for $6 \in \mathbb{Z}_7^{\times}$. What are the cyclic periods in this case?