Lecture 9

Reference: Judson, Chapter 4.1

Order of an element

The study of cyclic subgroups motivates us to introduce the following notion.

Definition 1: Order of element

Given group ($G, *$) and an element $a \in G$ consider the set of integer powers of a

$$
\left\{a^{k} \| k \in \mathbb{Z}\right\}=\left\{\ldots, a^{-2}, a^{-1}, a^{0}, a, a^{2}, \ldots\right\}
$$

If this sequence is periodic with period $d \in \mathbb{Z}$, we say that element $a \in G$ has order d :

$$
\operatorname{ord}(a)=d
$$

Equivalently, order of a is the smallest positive power ord (a) such that

$$
a^{\operatorname{ord}(a)}=e .
$$

If there are no such power, we say that a has infinite order.

Example 1

1. For every integer $n \geqslant 2$, the group $\left(\mathbb{Z}_{n},+\right)$ is a cyclic group of order n, since the class 1 is always a generator. The class -1 is also a generator. We therefore see that the generator of a cyclic group need not be unique.
2. The group $(\mathbb{Z},+)$ is cyclic, with generators 1 and -1 . Moreover, for every $m \in \mathbb{Z}, m \mathbb{Z}$ is the cyclic subgroup of \mathbb{Z} generated by m. Therefore, all the subgroups of \mathbb{Z} are cyclic.
3. The group of units $\left(\mathbb{Z}_{9}^{\times}, \cdot\right)$ is a cyclic group, with generator 2 . Indeed, as a set, $\left(\mathbb{Z}_{9}\right)^{\times}=\{1,2,4,5,7,8\}$, and

$$
\begin{gathered}
2^{1}=2,2^{2}=4,2^{3}=8 \\
2^{4} \equiv 7 \quad(\bmod 9) \\
2^{5} \equiv 5 \quad(\bmod 9) \\
2^{6} \equiv 1 \quad(\bmod 9)
\end{gathered}
$$

4. For every $n,\left(\mathbb{C}^{\times}, \cdot\right)$ has a cyclic subgroup of order n, given by the n-th roots of unity:

$$
U_{n}=\left\{e^{\frac{2 i k \pi}{n}}, k \in\{0, \ldots n-1\}\right\} .
$$

For example, for $n=2$ we get the subgroup $\{1,-1\}$, for $n=3$ we get $\left\{1, e^{\frac{2 i \pi}{3}}, e^{\frac{4 i \pi}{3}}\right\}$, and for $n=4$ we get $\{1, i,-1,-i\}$. Note that the elements of U_{n} are the vertices of a regular n-gon in the complex plane.

Proposition 1

If a is of finite order d, then for any integer $n, a^{n}=e$ if and only if $d \in n \mathbb{Z}$, that is, if and only if d divides n.

Proof. If $n=d k$ is a multiple of d, then we can write

$$
a^{n}=\left(a^{d}\right)^{k}=e^{k}=e
$$

In the other direction, assume $a^{n}=e$. Since by definition of order $a^{d}=e$, we have

$$
a^{n-q d}=\left(a^{n}\right) \cdot\left(a^{d}\right)^{-q}=e
$$

for any $q \in \mathbb{Z}$. In particular

$$
a^{r}=e
$$

where $r \in \mathbb{Z}$ is the remainder of division of n by d. Since $r<d$, we must necessarily have $r=0$ by minimality of d in the definition of the order.
Recall that a group ($G, *$) is called cyclic, if there exists an element $a \in G$ such that

$$
G=\left\{a^{k} \mid k \in \mathbb{Z}\right\}
$$

In this case we write $G=\langle a\rangle$. If G has exactly n elements, we will sometimes write

$$
G=\langle a\rangle_{n} .
$$

Element $a \in G$ is called a generator of G. Generators are not necessarily unique, so our first goal is to answer the following questions:

Question 1

When an element $b=a^{k} \in\langle a\rangle_{n}$ can be taken as a generator of $G=\langle a\rangle_{n}$?

Question 2

More generally, what is the cyclic subgroup $\langle b\rangle$ generated by $b=a^{k}$?

Example 2

Group $\left(\mathbb{Z}_{3},+\right)$ is cyclic generated by [1]:

$$
\mathbb{Z}_{3}=\langle[1]\rangle_{3}=\{[0],[1],[2]\}
$$

It is easy to see that element [2] can be taken as another generator.

Example 3

Group $\left(\mathbb{Z}_{4},+\right)$ is cyclic. One can choose either of [1] and [3] $=[-1]$ as a generator. On the other hand, element [2] does not generate \mathbb{Z}_{4} since

$$
\langle[2]\rangle=\{[0],[2]\} \subsetneq \mathbb{Z}_{4}
$$

Proposition 2

Element $b=a^{k} \in\langle a\rangle_{n}$ can be taken as a generator of $\langle a\rangle_{n}$ if and only if $\operatorname{gcd}(n, k)=1$.
Proof. First we note that a has order exactly n.
Element b generates the whole group, if and only if $a \in\langle b\rangle$, i.e., for some $l>0$ we have

$$
b^{l}=a^{l k}=a .
$$

By Proposition 1 this happens if and only if $l k \equiv 1 \bmod n$.
This happens if and only if element $k \in \mathbb{Z}_{n}$ is multiplicatively invertible (is a unit), which si equivalent to $\operatorname{gcd}(n, k)=1$.

Example 4

We saw that \mathbb{Z}_{9}^{\times}is a cyclic group with generator $a=2$ and is of order $\varphi(9)=6$. By the above example, all other generators are 2^{k}, where k is any number coprime with 6 , i.e., $k=1$ and $k=5$:

$$
2^{1}=2,2^{5}=5
$$

With a slight modification to the above argument, we can answer the second question

Proposition 3

Consider any element $b=a^{k} \in\langle a\rangle_{n}$. Then

$$
\langle b\rangle=\left\langle a^{\operatorname{gcd}(n, k)}\right\rangle_{n / \operatorname{gcd}(n, k)}=\left\{a^{0}, a^{\operatorname{gcd}(n, k)}, a^{2 \operatorname{gcd}(n, k)}, \ldots, a^{n-\operatorname{gcd}(n, k)}\right\},
$$

i.e., a^{k} generates a cyclic subgroup of order $n / \operatorname{gcd}(n, k)$ which can also be generated by $a^{\operatorname{gcd}(n, k)}$.

Problem 1: Every cyclic subgroup is abelian.

Proposition 4

Every subgroup of a cyclic group is cyclic.

Proof. We have already proved it for infinite cyclic group (see the statement about subgroups of \mathbb{Z}). Now let $H \subset\langle a\rangle_{n}$. Choose an element $a^{k} \in H$ with the smallest possible $k>0$.
It is an exercise to check that $H=\left\langle a^{k}\right\rangle$.

Problem 2: Let S^{3} be a group of symmetries of an equilateral triangle. Find orders of all its elements.

