Lecture 9

Reference: Judson, Chapter 4.1

Order of an element

The study of cyclic subgroups motivates us to introduce the following notion.

Definition 1: Order of element

Given group (G, *) and an element $a \in G$ consider the set of integer powers of a

$$\{a^k \mid k \in \mathbb{Z}\} = \{\dots, a^{-2}, a^{-1}, a^0, a, a^2, \dots\}.$$

If this sequence is periodic with period $d \in \mathbb{Z}$, we say that element $a \in G$ has **order** d:

 $\operatorname{ord}(a) = d$

Equivalently, order of a is the smallest positive power ord(a) such that

 $a^{\operatorname{ord}(a)} = e.$

If there are no such power, we say that *a* has infinite order.

Example 1

- 1. For every integer $n \ge 2$, the group $(\mathbb{Z}_n, +)$ is a cyclic group of order *n*, since the class 1 is always a generator. The class -1 is also a generator. We therefore see that the generator of a cyclic group need not be unique.
- 2. The group $(\mathbb{Z}, +)$ is cyclic, with generators 1 and -1. Moreover, for every $m \in \mathbb{Z}$, $m\mathbb{Z}$ is the cyclic subgroup of \mathbb{Z} generated by m. Therefore, all the subgroups of \mathbb{Z} are cyclic.
- 3. The group of units $(\mathbb{Z}_9^{\times}, \cdot)$ is a cyclic group, with generator 2. Indeed, as a set, $(\mathbb{Z}_9)^{\times} = \{1, 2, 4, 5, 7, 8\}$, and

$$2^{1} = 2, 2^{2} = 4, 2^{3} = 8,$$

 $2^{4} \equiv 7 \pmod{9},$
 $2^{5} \equiv 5 \pmod{9},$
 $2^{6} \equiv 1 \pmod{9}.$

4. For every *n*, $(\mathbb{C}^{\times}, \cdot)$ has a cyclic subgroup of order *n*, given by the *n*-th roots of unity:

$$U_n = \{e^{\frac{2ik\pi}{n}}, k \in \{0, \dots, n-1\}\}.$$

For example, for n = 2 we get the subgroup $\{1, -1\}$, for n = 3 we get $\{1, e^{\frac{2i\pi}{3}}, e^{\frac{4i\pi}{3}}\}$, and for n = 4 we get $\{1, i, -1, -i\}$. Note that the elements of U_n are the vertices of a regular *n*-gon in the complex plane.

Proposition 1

If *a* is of finite order *d*, then for any integer *n*, $a^n = e$ if and only if $d \in n\mathbb{Z}$, that is, if and only if *d* divides *n*.

Proof. If n = dk is a multiple of d, then we can write

$$a^n = (a^d)^k = e^k = e.$$

In the other direction, assume $a^n = e$. Since by definition of order $a^d = e$, we have

$$a^{n-qd} = (a^n) \cdot (a^d)^{-q} = e$$

for any $q \in \mathbb{Z}$. In particular

$$a^r = e$$

where $r \in \mathbb{Z}$ is the remainder of division of *n* by *d*. Since r < d, we must necessarily have r = 0 by minimality of *d* in the definition of the order.

Recall that a group (G, *) is called *cyclic*, if there exists an element $a \in G$ such that

$$G = \{a^k | k \in \mathbb{Z}\}.$$

In this case we write $G = \langle a \rangle$. If *G* has exactly *n* elements, we will sometimes write

 $G = \langle a \rangle_n$.

Element $a \in G$ is called a *generator* of *G*. Generators are not necessarily unique, so our first goal is to answer the following questions:

Question 1

When an element $b = a^k \in \langle a \rangle_n$ can be taken as a generator of $G = \langle a \rangle_n$?

Question 2

More generally, what is the cyclic subgroup $\langle b \rangle$ generated by $b = a^k$?

Example 2

Group (\mathbb{Z}_3 , +) is cyclic generated by [1]:

 $\mathbb{Z}_3 = \langle [1] \rangle_3 = \{ [0], [1], [2] \}.$

It is easy to see that element [2] can be taken as another generator.

Example 3

Group (\mathbb{Z}_4 , +) is cyclic. One can choose either of [1] and [3] = [-1] as a generator. On the other hand, element [2] does not generate \mathbb{Z}_4 since

$$\langle [2] \rangle = \{ [0], [2] \} \subsetneq \mathbb{Z}_4.$$

Proposition 2

Element $b = a^k \in \langle a \rangle_n$ can be taken as a generator of $\langle a \rangle_n$ if and only if gcd(n,k) = 1.

Proof. First we note that *a* has order exactly *n*. Element *b* generates the whole group, if and only if $a \in \langle b \rangle$, i.e., for some l > 0 we have

 $b^l = a^{lk} = a.$

By Proposition 1 this happens if and only if $lk \equiv 1 \mod n$. This happens if and only if element $k \in \mathbb{Z}_n$ is multiplicatively invertible (is a unit), which si equivalent to gcd(n,k) = 1.

Example 4

We saw that \mathbb{Z}_9^{\times} is a cyclic group with generator a = 2 and is of order $\varphi(9) = 6$. By the above example, all other generators are 2^k , where *k* is any number coprime with 6, i.e., k = 1 and k = 5:

 $2^1 = 2, 2^5 = 5$

With a slight modification to the above argument, we can answer the second question

Proposition 3

Consider any element $b = a^k \in \langle a \rangle_n$. Then

$$\langle b \rangle = \langle a^{\gcd(n,k)} \rangle_{n/\gcd(n,k)} = \{a^0, a^{\gcd(n,k)}, a^{2\gcd(n,k)}, \dots, a^{n-\gcd(n,k)}\},\$$

i.e., a^k generates a cyclic subgroup of order n/gcd(n,k) which can also be generated by $a^{gcd(n,k)}$.

Problem 1: Every cyclic subgroup is abelian.

Proposition 4

Every subgroup of a cyclic group is cyclic.

Proof. We have already proved it for infinite cyclic group (see the statement about subgroups of \mathbb{Z}). Now let $H \subset \langle a \rangle_n$. Choose an element $a^k \in H$ with the smallest possible k > 0. It is an exercise to check that $H = \langle a^k \rangle$.

Problem 2: Let S^3 be a group of symmetries of an equilateral triangle. Find orders of all its elements.