Midterm

This is a **closed book** exam. To get the full credit, write complete, detailed solutions. No credit will be given for an answer without a proof.

Problem 1 (10 points). *a*) Let *H* be a group. What does it mean for *H* to be *non-commutative*?

b) Let *G* be a commutative group, and *H* a *non-commutative* group. Prove that there is no injective homomorphism

 $\varphi \colon H \to G.$

Problem 2 (10 points). Consider group¹ $G = \mathbb{Z} \times \mathbb{Z}_3$.

a) Find all elements $g \in G$ of finite order.

b) Find an *infinite* proper subgroup $H \subsetneq G$.

Problem 3 (10 points). Prove or disprove: for any of the following statements, figure out if it is true or false, by either proving it or providing a counterexample.

a) Group \mathbb{Z}_{100} has a subgroup of order $d \in \mathbb{Z}$ for every divisor d of 100.

b) Set *H* consisting of matrices

[1	0][1	0][-1	0] [-1	0]
0	1]' [0	$\begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}$	1]'[0	-1]

is a group with respect to matrix multiplication and is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Problem 4 (10 points). Consider a group $G = \mathbb{Z} \times \mathbb{Z}$ and let *H* to be a subset

 $H = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \text{ and } y \text{ are even}\} \subset H$

a) Prove that *H* is a subgroup.

b) How many left cosets *gH* are there?

Problem 5 (10 points). Let *p* be a prime number.

a) How many multiples of *p* are there in the set $\{1, 2, ..., p^k\}$?

b) Find the size of the group $(\mathbb{Z}_{n^k}^{\times}, \times)$.

Problem 6 (10 points). *a*) Find three non-isomorphic groups of order 8.

(Make sure to prove that the groups are indeed non-isomorphic.)

b) Find a subgroup of order 2 in each of these groups.

¹As usual, groups \mathbb{Z} and \mathbb{Z}_n are considered with respect to addition.