Homework 1

Due: Tuesday, September 17

Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You can use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Let $z_0 = x + iy \in \mathbb{C}$ be a number such that $x \neq 0$. Prove that the function $\arctan(y/x)$ is harmonic by finding a holomorphic function f(z) in a neighbourhood of z_0 such that $\operatorname{Im} f(z) = \arctan(y/x)$.

Problem 2. Draw on the complex plane all solutions of the equation $z^3 = -i$.

Problem 3. *a*) Let *z*, *w* be two complex numbers such that $z\overline{w} \neq 1$. Prove that

$$\left|\frac{w-z}{1-\overline{w}z}\right| < 1$$
, if $|z| < 1$ and $|w| < 1$

and

$$\left|\frac{w-z}{1-\overline{w}z}\right| = 1$$
, if $|z| = 1$ or $|w| = 1$

b) Prove that for a fixed $w \in \mathbb{D} := \{z \in \mathbb{C} \mid |z| < 1\}$ the mapping

$$F_w\colon z\mapsto \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions

- F_w is holomorphic and maps \mathbb{D} to \mathbb{D} .
- $F_w(0) = w$ and $F_w(w) = 0$
- $|F_w(z)| = 1$ if |z| = 1.
- $F_w: \mathbb{D} \to \mathbb{D}$ is bijective.

Problem 4. Consider the function

$$f(x+iy) = \sqrt{|x|||y|}, \qquad x, y \in \mathbb{R}.$$

Show that f satisfies the Cauchy-Riemann equations at (0, 0) but f is not holomorphic at this point. Why there is no contradiction with Theorem 13 from Lecture 2?

Problem 5. Prove that

- *a*) The power series $\sum nz^n$ does not converge anywhere on the unit circle.
- *b*) The power series $\sum z^n/n^2$ converges everywhere on the unit circle.