Homework 1

Due: Tuesday, September 17
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You can use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Let $z_{0}=x+\boldsymbol{i} y \in \mathbb{C}$ be a number such that $x \neq 0$. Prove that the function $\arctan (y / x)$ is harmonic by finding a holomorphic function $f(z)$ in a neighbourhood of z_{0} such that $\operatorname{Im} f(z)=\arctan (y / x)$.

Problem 2. Draw on the complex plane all solutions of the equation $z^{3}=-\boldsymbol{i}$.
Problem 3. a) Let z, w be two complex numbers such that $z \bar{w} \neq 1$. Prove that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|<1, \quad \text { if }|z|<1 \text { and }|w|<1
$$

and

$$
\left|\frac{w-z}{1-\bar{w} z}\right|=1, \quad \text { if }|z|=1 \text { or }|w|=1
$$

b) Prove that for a fixed $w \in \mathbb{D}:=\{z \in \mathbb{C}| | z \mid<1\}$ the mapping

$$
F_{w}: z \mapsto \frac{w-z}{1-\bar{w} z}
$$

satisfies the following conditions

- F_{w} is holomorphic and maps \mathbb{D} to \mathbb{D}.
- $F_{w}(0)=w$ and $F_{w}(w)=0$
- $\left|F_{w}(z)\right|=1$ if $|z|=1$.
- $F_{w}: \mathbb{D} \rightarrow \mathbb{D}$ is bijective.

Problem 4. Consider the function

$$
f(x+\boldsymbol{i} y)=\sqrt{|x|| | y \mid}, \quad x, y \in \mathbb{R}
$$

Show that f satisfies the Cauchy-Riemann equations at $(0,0)$ but f is not holomorphic at this point. Why there is no contradiction with Theorem 13 from Lecture 2?

Problem 5. Prove that
a) The power series $\sum n z^{n}$ does not converge anywhere on the unit circle.
b) The power series $\sum z^{n} / n^{2}$ converges everywhere on the unit circle.

