Homework 10

Due: Tuesday, November 26

Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Prove that \mathbb{D} and \mathbb{C} are not conformally equivalent.

Problem 2. Does there exists a holomorphic surjection $\mathbb{D} \to \mathbb{C}$?

Problem 3. Prove that

$$f(z) := -\frac{1}{2} \left(z + \frac{1}{z} \right)$$

is a conformal map from the half disk $\{z \mid |z| < 1, Im(z) > 0\}$ to the upper half-plane **H**.

Problem 4. A holomorphic function $f: U \to V$ is *local bijection* if for every $z \in U$ there exists an open disk $D \subset U$ centered at z_0 such that $f: D \to f(D)$ is a bijection.

Prove that $f: U \to V$ is a local bijection if and only if $f'(z) \neq 0$ for $z \in U$.

Hint: use Rouche's theorem.

Problem 5. Prove that family of functions $\mathcal{F} = \{z^n\}_{n \in \mathbb{N}}$ is normal in the unit disk \mathbb{D} but not normal in any larger open set.