Homework 11

Due: Tuesday, December 3
To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1 (20 points). Let $f(z)=\log (z)$ be the principle branch of logarithm in $U=\mathbb{C}-(-\infty ; 0]$.
a) Find two Taylor's series for $f(z)$ centered at $z_{0}=-1-\boldsymbol{i}$ and $z_{0}=-1+\boldsymbol{i}$.
b) What is their radius of convergence?
c) What is their value at $z=-1$?

Problem 2 (10 points). Let $[f]_{1}$ be a germ of the function $f(z)=\sqrt{z}+\sqrt[3]{z}$ at $z=1$. How many germs one can obtain at $z=-1$ by analytically continuing $[f]_{1}$ along all possible paths in $\mathbb{C}-\{0\}$.

Problem* 3 (Optional, no credit). Fix $\alpha>0$. Prove that function

$$
f(z)=\sum 2^{-n \alpha} z^{2^{n}}
$$

is holomorphic in $B_{1}(0)$, extends to a continuous function on $\bar{B}_{1}(0)$, yet it does not extend to a holomorphic function in any larger open set.

Hint: Restriction of $f(z)$ to the unit circle is continuous but nowhere differentiable.

