Homework 11

Due: Tuesday, December 3

To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1 (20 points). Let $f(z) = \log(z)$ be the principle branch of logarithm in $U = \mathbb{C} - (-\infty; 0]$.

a) Find two Taylor's series for f(z) centered at $z_0 = -1 - i$ and $z_0 = -1 + i$.

b) What is their radius of convergence?

c) What is their value at z = -1?

Problem 2 (10 points). Let $[f]_1$ be a germ of the function $f(z) = \sqrt{z} + \sqrt[3]{z}$ at z = 1. How many germs one can obtain at z = -1 by analytically continuing $[f]_1$ along all possible paths in $\mathbb{C} - \{0\}$.

Problem* 3 (Optional, no credit). Fix $\alpha > 0$. Prove that function

$$f(z) = \sum 2^{-n\alpha} z^{2^n}$$

is holomorphic in $B_1(0)$, extends to a continuous function on $\overline{B}_1(0)$, yet it does not extend to a holomorphic function in any larger open set.

Hint: Restriction of f(z) to the unit circle is continuous but nowhere differentiable.