Homework 2

Due: Tuesday, September 24
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. a) Find the imaginary and real parts of $(1+\boldsymbol{i})^{i}:=e^{\log (1+i) i}$. b) Show that the set of values of $\log \left(\boldsymbol{i}^{2}\right)$ is not the same as the set of values of $2 \cdot \log \boldsymbol{i}$. c) Show that $\log (-1+\boldsymbol{i})+\log (-1+\boldsymbol{i}) \neq \log \left((-1+\boldsymbol{i})^{2}\right)$.

The above problem shows that one should be cautious working with complex logarithms!
Problem 2. Assume that $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic with $|f(z)|=1$ everywhere. Prove that f is constant.
Hint: given $f(x+\boldsymbol{i} y)=u+\boldsymbol{i} v$, differentiate $u^{2}+v^{2}$ with respect to x and y and use Cauchy-Riemann equations to deduce that u / v and v / u are constant whenever defined.

Problem 3. Given $z=x+\boldsymbol{i} y$, we define trigonometric functions

$$
\cos z:=\frac{e^{i z}+e^{-i z}}{2} \quad \sin z:=\frac{e^{i z}-e^{-i z}}{2 i}
$$

and their hyperbolic counterparts

$$
\cosh z:=\frac{e^{z}+e^{-z}}{2} \quad \sinh z:=\frac{e^{z}-e^{-z}}{2}
$$

Prove that a) $|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y$ and $\left.|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y ; b\right)|\cos z|^{2}+|\sin z|^{2} \geqslant 1$ with equality if and only if z is purely real.

Problem 4. Evaluate

$$
\int_{\gamma}\left(\frac{1}{z}+i\right)^{2} d z
$$

where γ is the straight segment connecting \boldsymbol{i} and $2 \boldsymbol{i}$.
Problem 5. Prove that the function $f(z)=\frac{1}{z-1}-\frac{1}{z+1}$ is $\left.a\right)$ holomorphic in $\left.\mathbb{C}-\{-1,1\} ; b\right)$ does not have a primitive in $\mathbb{C}-\{-1,1\} ; c$) does have a primitive in $\mathbb{C}-\{t+\boldsymbol{i} 0 \mid t \in[-1,1]\}$.
Hint: $\frac{z-1}{z+1} \notin(-\infty, 0]$ for $z \in \mathbb{C}-\{t+i 0 \mid t \in[-1,1]\}$. Hence function $F(z):=\log \frac{z-1}{z+1}$ is a well-defined holomorphic, single-valued function on $\mathbb{C}-\{t+\boldsymbol{i} 0 \mid t \in[-1,1]\}$.

