Homework 3

Due: Tuesday, October 1
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Given γ as below, find all possible values of the integral $\int_{\gamma} \frac{d z}{z-z_{0}}$, where $z_{0} \in \mathbb{C}, z_{0} \notin \gamma$.

Problem 2. Prove that a function which is holomorphic in the whole plane and satisfies an inequality $|f(z)|<$ $|z|^{n}$ for some n and all sufficiently large $|z|$ reduces to a polynomial. What can be the degree of such polynomial?

Problem 3. Compute integrals for $n, m \in \mathbb{Z}$
a) $\int_{|z|=1} e^{z} z^{-n} d z ;{ }^{1}$
b) $\int_{|z-2|=3 / 2} z^{n}(1-z)^{m} d z$.

Problem 4. Prove that for any holomorphic function $\mathbb{D} \rightarrow \mathbb{C}$ and $r \in(0,1)$ we have

$$
2 f^{\prime}(0)=\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{f(\zeta)-f(-\zeta)}{\zeta^{2}} d \zeta
$$

Hint: function $F(\zeta)=\frac{f(\zeta)-f(-\zeta)}{\zeta}$ extends to a holomorphic function in \mathbb{D} with $F(0)=2 f^{\prime}(0)$.
Problem 5. For a holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$ define

$$
d:=\sup _{z, w \in \mathbb{D}}|f(z)-f(w)| .
$$

Prove that $2 f^{\prime}(0) \leqslant d$.
Hint: use Problem 4.
Bonus question ${ }^{2}$ Let $f(z)$ be as in Problem 5. Prove that the equality holds if and only if $f(z)$ is linear: $f(z)=a_{0}+a_{1} z$.

[^0]
[^0]: ${ }^{1}$ Unless specified otherwise, all circular contours are traveled counterclockwise.
 ${ }^{2}$ You are not expected to solve this problem and no credit will be given.

