Homework 5

Due: Tuesday, October 15
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. For $R \in(0,+\infty)$, such that $e^{z}-1$ is nonzero on the circle $|z|=R$, evaluate the integral

$$
\int_{|z|=R} \frac{e^{z}}{e^{z}-1} d z
$$

Problem 2. Function $f(z)$ is holomorphic in $\{\operatorname{Im}(z)>0\}$ and bounded by M. Find an upper bound for $f^{(n)}(z)$ in $\{\operatorname{Im}(z)>r\}$.

Problem 3. Let $U \subset \mathbb{C}$ be a bounded neighbourhood of $0 \in \mathbb{C}$. Consider a holomorphic function $f: U \rightarrow U$. Assume that $f(0)=0$ and $f^{\prime}(0)=1$. Prove that $f(z)=z$.
Hint: Write $f(z)=z+a_{n} z^{n}+O\left(z^{n+1}\right)$ near 0 and show that k-fold composition $f_{k}:=f \circ \cdots \circ f$ satisfies $f_{k}(z)=z+k a_{n} z^{n}+O\left(z^{n+1}\right)$. Use Cauchy's inequalities with $k \rightarrow \infty$ to conclude that $a_{n}=0$.

Problem 4. Find the number of zeros of $f(z)=z^{5}+3 z-1$ in the annulus $\{1<|z|<2\}$.
Problem 5. Prove that if $f(z)$ is an injective entire function, then $f(z)=a z+b$ with $a \neq 0^{1}$.
Hint: Use open mapping theorem and Casorati-Weierstrass to prove that $f(z)$ cannot have essential singularity at ∞.

[^0]
[^0]: ${ }^{1}$ This problem shows that the group holomorphic isomorphisms of \mathbb{C} is isomorphic to the group of affine transformations $f(z)=a z+b$.

