Homework 6

Due: Tuesday, October 29
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Show that a holomorphic function $f(z): \mathbb{D} \rightarrow \mathbb{D}$ satisfies

$$
\frac{\left|f^{\prime}(z)\right|}{\left(1-|f(z)|^{2}\right)} \leqslant \frac{1}{1-|z|^{2}}
$$

Hint: use general form of Schwarz lemma and let $z_{1} \rightarrow z_{2}$.
Problem 2. Find the poles and residues of a) $f(z)=\frac{1}{\sin z}$; b) $f(z)=\frac{1}{z^{m}(1-z)^{n}}$, where $m, n \in \mathbb{N}$.
Problem 3. Evaluate the integrals
a) $\int_{0}^{+\infty} \frac{\cos x}{x^{2}+a^{2}} d x \quad a \in \mathbb{R} ;$
b) $\int_{-\infty}^{+\infty} \frac{d x}{1+x^{4}}$

Problem 4. Let $R(x)=P(x) / Q(x)$ be a rational function such that $Q(x)$ does not have real roots and $\operatorname{deg} Q \geqslant$ $\operatorname{deg} P+2$. Prove that

$$
\int_{-\infty}^{+\infty} R(x) d x=2 \pi \boldsymbol{i} \sum_{\operatorname{Im} z_{k}>0} \operatorname{res}_{z_{k}} R(z)
$$

