Homework 8

Due: Tuesday, November 12
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Prove that for $|z|<1$

$$
(1+z)\left(1+z^{2}\right)\left(1+z^{4}\right)\left(1+z^{8}\right) \cdots=\frac{1}{1-z}
$$

Problem 2. Prove that

$$
\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}
$$

converges absolutely and uniformly on every compact set.
Problem 3. Show that the Laurent series of $f(z)=1 /\left(e^{z}-1\right)$ at the origin is of the form

$$
\frac{1}{z}-\frac{1}{2}+\sum_{i=1}^{\infty} \frac{B_{k}}{(2 k)!} z^{2 k-1}, \quad B_{k} \in \mathbb{R}
$$

Number B_{k} are called Bernoulli numbers. Calculate (with proof!) B_{1} and B_{2}.
Problem 4. Prove the identity

$$
\frac{\pi^{2}}{\sin ^{2} \pi z}=\sum_{-\infty}^{+\infty} \frac{1}{(z-n)^{2}}
$$

Problem 5. Comparing coefficients in the Laurent series of $\cot \pi z\left(\right.$ or $\left.\pi^{2} / \sin ^{2} \pi z\right)$ and of its expression as a sum of partial fractions, find the values of

$$
\sum \frac{1}{n^{2}} \text { and } \sum \frac{1}{n^{4}}
$$

