Homework 9

Due: Tuesday, November 19
Each problem is worth 10 points. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Prove the reflection formula for $\Gamma(s)$

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}
$$

Use this identity to find $\Gamma(1 / 2)$.
Problem 2. Prove that for all complex numbers $s \neq 0,-1,-2, \ldots$

$$
\frac{d^{2} \log \Gamma(s)}{d s^{2}}=\sum_{n=0}^{\infty} \frac{1}{(s+n)^{2}}
$$

where $\frac{d^{2} \log \Gamma(s)}{d s^{2}}$ can be defined as $\left(\frac{\Gamma^{\prime}(s)}{\Gamma(s)}\right)^{\prime}$.
Problem 3 (Legendre's Duplication Formula). a) Prove that $\Gamma(z) \Gamma\left(z+\frac{1}{2}\right)$ and $\Gamma(2 z)$ have the same poles. b) Prove that $\sqrt{\pi} \Gamma(2 z)=2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)$
Hint: Weierstrass factorizations of functions $\left(\Gamma(z) \Gamma\left(z+\frac{1}{2}\right)\right)^{-1}$ and $\Gamma(2 z)^{-1}$ must differ by a factor $e^{a z+b}$.
Problem 4. Prove that for $\mathfrak{K e}(s)>1$

$$
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x
$$

Hint: Write $1 /\left(e^{x}-1\right)=\sum_{n=1}^{\infty} e^{-n x}$
Problem 5. Let $\mu: \mathbb{N} \rightarrow\{-1,0,1\}$ be the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{d}, & \text { if } n \text { is square-free and has } d \text { prime factors } \\ 0, & \text { otherwise }\end{cases}
$$

Prove that for $\mathfrak{R e}(s)>1$

$$
\zeta(s)^{-1}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

