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Lecture 1

Foreword

1 Complex analysis is one of the most beautiful fields of mathematics. It has numerous connections with
the most of modern branches of pure and applied mathematics: algebraic geometry, number theory, physics
(electrostatics, hydrodynamics, heat conduction), probability, combinatorics.

Historically, complex numbers were introduced in 16th century as a way to interpret the Cardano formula for
the roots of cubic polynomial x3 + px+ q = 0:
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To obtain all 3 roots of the cubic equation we have to interpret the cubic root as a multivalued function with
values in C.

For several hundred years after Cardano complex numbers remained an obscure topic. It took several centuries
and efforts of the best mathematicians of their time (Euler, Gauss, Weierstrass, Schwarz, Cauchy, Abel and
many others) to demonstrate the fascinating nature of complex numbers and complex analysis, and build the
ground for modern applications.

Field C of Complex Numbers

Definitions

Let iii denote the imaginary unit defined by the property

iii2 = −1.

Sometimes element iii is called the square root of −1 and denoted by
√
−1. We define the complex numbers C by

adjoining element iii to the field of real numbers:

Definition 1. Complex numbers C := R[iii] is the vector space over R spanned by 1 and iii, i.e., it is the set of all
linear combinations

a+ iiib, a,b ∈R.

a and b are called real and imaginary parts of a complex number z = a+ iiib:

a =<(z),b ==(z).

Being a vector space, C is closed under addition:

(a+ iiib) + (c+ iiid) = (a+ c) + iii(b+ d).

Moreover, using the defining property of iii there is a unique way to turn C into a commutative ring by defining
multiplication as

(a+ iiib)(c+ iiid) = ac+ iiiad + iiibc+ iii2bd = (ac − bd) + iii(ad + bc).

Complex numbers of the form z = a+iii0 are called purely real and are abbreviated as z = a. The neutral elements
in C with respect to addition is z = 0, and the neutral element with respect to multiplication is z = 1.

The key feature of C is that it is also a field, i.e., we can not only add up, subtract and multiply complex
numbers, but also can divide by nonzero elements:

1
a+ iiib

=
a− iiib

(a+ iiib)(a− iiib)
=
a− iiib
a2 + b2 =

a

a2 + b2 + iii
(
− b

a2 + b2

)
.

By the very definition of C, the quadratic polynomial x2 + 1, which is irreducible over R, now has two roots
over C: x = ±iii.

1Large part of these notes is borrowed from the lectures by Antoine Cerfon.

https://www.math.nyu.edu/~cerfon/complex.html
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Exercise 1. Prove that any quadratic polynomial with real coefficients has two complex roots (counting with
multiplicities).

Theorem 2 (Fundamental Theorem of Algebra). Any polynomial p(x) ∈ C[x] of degree n > 1 with complex coeffi-
cient can be factored as

p(x) = an(x − z1)(x − z2) . . . (x − zn),

i.e., p(x) has exactly n roots over C (with multiplicities).

There exist many proofs o the Fundamental Theorem of Algebra, but the quickest and the most beautiful
proofs can be obtained with the use of complex analysis. We will discuss three of them later in this course.

Exercise 2. Let M ⊂Mat2(C) be the set of 2× 2 matrices:

M =
{(
a b
−b a

) ∣∣∣∣ a,b ∈R}
.

(a) Prove that M is closed under matrix addition and multiplication (+,×).

(b) Show that (M,+,×) is isomorphic to the field of complex numbers.

Conjugation

In computing the multiplicative inverse of z = a+ iiib we used the complex conjugate of z defined as

z := a− iiib

Conjugation satisfies several important properties:

• conjugations is involutive: z = z

• z · z is a positive real number, unless z = 0.

• conjugation is an additive and multiplicative automorphism of C:

z+w = z+w

z ·w = z ·w

Remark 3. As a corollary of the last property we conclude that if w ∈ C is a root of a polynomial p(x) =
xn + an−1x

n−1 + · · ·+ a1x+ a0 with real coefficients, i.e., p(w) = 0, then w is also a root:

p(w) = wn + an−1w
n−1 + · · ·+ a1w+ a0 = wn + an−1wn−1 + · · ·+ a1w+ a0 = 0.

This observation implies that all complex, not purely real roots a polynomial with real coefficients come in
conjugate pairs: w and w. Combining this observation with the Fundamental Theorem of Algebra we conclude
that any polynomial with real coefficients of degree n > 1 can be factored as a product of linear and quadratic
factors:

p(x) = an
∏
i

(x − xi) ·
∏

(x2 + pix+ qi).

We can express the real and imaginary parts of z = a+ iiib in terms of conjugation:

<(z) =
z+ z

2
=(z) =

z − z
2iii

We define modulus |z| of z = a + iiib by the identity |z|2 = zz. Clearly |z| =
√
a2 + b2. Properties of conjugation

imply that
|z1 · z2| = |z1| · |z2|,

i.e., | · | : C→R>0 is a multiplicative homomorphism.
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Complex plane

It is convenient to picture complex numbers z = a+iiib as points (or zero-rooted vectors) on the Cartesian plane
R

2 with coordinate axes <(z) and =(z). This way the modulus of z = a + iiib has a clear interpretation as
the Euclidean length

√
a2 + b2 of the corresponding vector. Addition of complex numbers translates into the

addition of the underlying vectors.
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Instead of Cartesian coordinates<(z) and=(z) on R
2 we can consider polar coordinates (ρ(z),ϕ(z)) such that

for z = a+ iiib we have
a = ρcosϕ, b = ρ sinϕ

z = ρ(cosϕ + iii sinϕ).

Number ρ(z) = |z| is the modulus of a complex number and number ϕ(x) ∈ [0,2π) is the argument. Of course
the choice of the range for the argument function is somewhat arbitrary and could be chosen to be, e.g., (−π,π]
instead.

Exercise 3. Prove that for angles ϕ and ψ we have

(cosϕ + iii sinϕ)(cosψ + iii sinψ) = cos(ϕ +ψ) + iii sin(ϕ +ψ).

The above exercise “follows” from the celebrated Euler’s formula:

eiiiϕ := (cosϕ + iii sinϕ)

At the moment, this formula does not make sense, since we have not defined exponent of a complex number.
We will make it precise later in the course by, first defining the left-hand side, and then using the Euler’s
formula as the definition of cos and sin functions. For now, we will use eiiiϕ as a shorthand for the right hand
side of Euler’s formula.

Topology on C

Complex plane has a natural topology, i.e., a collection of open subsets U ⊂C:

Definition 4. Subset U ⊂ C is called open if for any z ∈ U there exists ε > 0 such that the open ball Bε(z) :=
{w ∈C | |z −w| < ε} is contained in U .

Now, once we have endowed C with a structure of a topological space, we can define continuous functions
on C. We will make it explicit in our next class.

Polar coordinates and multiplication

If z1 = ρ1e
iiiϕ1 and z2 = ρ2e

iiiϕ2 then z1z2 = ρ1ρ2e
iii(ϕ1+ϕ2), i.e., under multiplication of two complex numbers their

arguments add up and their moduli multiply. A particularly useful consequence of this fact is de Moivre’s
formula. For n ∈Z:

(cosϕ + iii sinϕ)n = cos(nϕ) + iii sin(nϕ)

Using de Moivre’s formula we can also find nth root of a complex number z. Namely, if z = ρeiiiϕ , then there are
precisely n numbers

w = ρ1/neiii(
ϕ
n + 2πk

n ), k = 0, . . . ,n− 1

satisfying wn = z. A particular important case is z = 1 which yields n roots of unity:

1,ω,ω2, . . . ,ωn−1, ω := eiii
2π
n .
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Riemann sphere Ĉ = C∪ {∞}

Instead of the complex plane C, we will often need to consider the one-point compactification of C.

Definition 5. Riemann sphere Ĉ as a set, is the complex plane C together with a point∞ at “infinity”. We turn
Ĉ into a topological space by taking as open sets all the open subsets U of C together with V = (C\K)∪ {∞},
where K ⊂C is compact (closed and bounded).

We can cover Ĉ with two charts U1 'C and U2 'C such that U1∩U2 = C\{0} and gluing them along the maps

C←C\{0} → C

z 7→z 7→ z−1.

The geometric intuition for considering the Riemannian sphere is provided by stereographic projection which
we ‘define’ using a picture:

S
2

C

N

P

proj(P )

Namely, given a unit sphere S2 in R
3 which intersects the complex plane {z = 0} in the unit circle we project any

point P ∈ S2 on the sphere onto the plane from the north pole N . Projection proj : S2\{N } → C is well-defined
everywhere except for the north pole N . By adding a point∞ to the complex plane, and setting proj(N ) =∞,
we extend stereographic projection to a continuous bijective map between S

2 and Ĉ.

Exercise 4. Prove that for any a,b,c,d ∈C such that ad − bc , 0 the function

f (z) =
az+ b
cz+ d

extends to a well-defined bijective continuous map

f̂ : Ĉ→ Ĉ.

Transformations of this type form a group called Möbius group.

Exercise 5. Prove that Möbius group is isomorphic to PSL2(C) := SL2(C)/{±Id}.


