## Lecture 10

## Argument principle

Let $f(z)$ ba a not identically zero holomorphic function in an open disk $D$. Often it is important to locate and count zeros of $f$ in $D$. The argument principle is a powerful tool solving this problem.
Let $\gamma \subset D$ be a contour such that $f(z) \neq 0$ on $\gamma$. Curve $\gamma$ is contained in an open disk $D^{\prime} \subsetneq D$ and function $f(z)$ can only have finitely zeros in $D^{\prime}$. Let $Z=\left\{\zeta_{i}\right\}_{j=1}^{N}$ be the set of zeros of $f$ in $D^{\prime}$ counted with multiplicities (i.e., if $\zeta$ is a zero of order $k$, then it appears $k$ times in $Z$ ).

Theorem 1 (Argument principle). Under the above assumptions,

$$
\begin{equation*}
\sum_{j=1}^{N} n\left(\gamma, \zeta_{j}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z \tag{1}
\end{equation*}
$$

Proof. Since $Z=\left\{\zeta_{j}\right\}$ is the set of all roots of $f(z)$ in $D^{\prime}$, there is a factorization

$$
f(z)=\left(z-\zeta_{1}\right) \ldots\left(z-\zeta_{N}\right) g(z)
$$

where function $g(z)$ is holomorphic in $D$ and does not have zeros in $D^{\prime}$. Using the basic formula for the derivative of the product, we find:

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{1}{z-\zeta_{1}}+\cdots+\frac{1}{z-\zeta_{N}}+\frac{g^{\prime}(z)}{g(z)}
$$

Function $g^{\prime}(z) / g(z)$ is holomorphic in the whole $D^{\prime}$, so by Cauchy's theorem

$$
\int_{\gamma} \frac{g^{\prime}(z)}{g(z)} d z=0
$$

Therefore:

$$
\frac{1}{2 \pi \boldsymbol{i}} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi i} \sum_{j=1}^{N} \int_{\gamma} \frac{d z}{z-\zeta_{j}}=\sum_{j=1}^{N} n\left(\gamma, \zeta_{j}\right)
$$

Remark 2. Argument principle implies that $I:=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z$ is an integer. In particular, if we continuously deform $\gamma$ and/or $f(z)$ then the value of $I$ does not change as long as it is well-defined.

Given a parametrization $\gamma(t), t \in[a, b]$ of $\gamma$, one can rewrite expression (1) as follows:

$$
\frac{1}{2 \pi \boldsymbol{i}} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi \boldsymbol{i}} \int_{a}^{b} \frac{f^{\prime}(\gamma(t)) \gamma^{\prime}(t)}{f(\gamma(t))} d t=\frac{1}{2 \pi \boldsymbol{i}} \int_{a}^{b} \frac{(f \circ \gamma)^{\prime}(t)}{(f \circ \gamma)(t)} d t=\frac{1}{2 \pi \boldsymbol{i}} \int_{\Gamma} \frac{d w}{w}
$$

where $\Gamma=(f \circ \gamma)$ is a contour in the complex plane $\mathbb{C}$ with coordinate $w$. In other words.

$$
\begin{equation*}
\sum_{j} n\left(\gamma, \zeta_{j}\right)=n(\Gamma, 0) \tag{2}
\end{equation*}
$$

A special, yet the most useful version of argument principle occurres if $\gamma$ is a circle enclosing disk $D^{\prime}$. In this case every $n\left(\gamma, \zeta_{j}\right)=1$ for every zero inside $D^{\prime}$, and the integral (1) computes the number of zeros of $f(z)$ inside disk $D^{\prime}$. In particular, equation (2) says that this number equals the winding number of $\Gamma$ around the origin.
Example 3. If $P(z)$ is a polynomial of degree $n$, then for a large $R>0$

$$
\int_{|z|=R} \frac{P^{\prime}(z)}{P(z)} d z=2 \pi i n
$$

Next theorem exploits the continuity of the integral $\int_{\gamma} f^{\prime}(z) / f(z) d z$ in $f$ to reduce computation of the number of zeros of $f$ to a possibly simpler function.

Theorem 4 (Rouchés theorem). Suppose that functions $f(z)$ and $g(z)$ are holomorphic in a neighbourhood of a closed disk $\bar{D}$. If

$$
|f(z)|>|g(z)|
$$

on the contour $\gamma=\partial D$, then $f$ and $f+g$ have the same number of zeros inside $D$.
Proof. Consider a function $f_{t}(z):=f(z)+\operatorname{tg}(z)$ and let $n_{t}$ be the number of zeros of $f_{t}(z)$. Condition $|f|>|g|$ guarantees that $f+t g$ does not vanish on $\gamma$ for $t \in[0,1]$, therefore

$$
n_{t}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f_{t}^{\prime}(z)}{f_{t}(t)} d z
$$

The latter integral is well-defined and continuous in $t$ for $t \in[0,1]$, and takes only integer vales, therefore it is constant. Hence $n_{0}=n_{1}$.

Remark 5. Rouché's theorem provide an alternative way to prove fundamental theorem of algebra. Given a polynomial $P(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ we can find $R$ large enough such that $f(z)=z^{n}$ and $g(z)=P(z)-z^{n}$ satisfy the assumptions of Theorem 4. Hence we can conclude that $f(z)=z^{n}$ and $f(z)+g(z)=P(z)$ have the same number of zeros in a large enough disk.

Exercise 1. Determine the number of zeros of $f(z)=z^{5}+3 z^{2}-1$ in $\{1<|z|<2\}$.

## Open mapping theorem. Maximum principle

One of the important consequences of argument principle if open mapping theorem.
Definition 6. A continuous map $f: X \rightarrow Y$ is called open, if image of any open set $U \subset X$ is open in $Y$.
Exercise 2. Characterize open mappings $f: \mathbb{R} \rightarrow \mathbb{R}$.
Theorem 7 (Open mapping theorem). If $f(z)$ is holomorphic an non-constant in an open connected region, then $f(z)$ is open.

Proof. Take arbitrary open subset $U$ of the domain of $f$ and let us prove that $f(U)$ is open.
Consider a point $z_{0} \in U$ and define $w_{0}:=f\left(z_{0}\right)$. We will prove that a small neighbourhood of $w_{0}$ is contained in the image of $U$. Equivalently, we want to prove that function

$$
g(z):=f(z)-w=\underbrace{\left(f(z)-w_{0}\right)}_{F(z)}+\underbrace{\left(w_{0}-w\right)}_{G(z)}
$$

has zeros for $w$ in a small neighbourhood of $w_{0}$.
Choose $\delta>0$ such that $B_{\delta}\left(z_{0}\right)$ is contained in $U$ and $f(z) \neq w_{0}$ on $\left|z-z_{0}\right|=\delta$. Then select $\epsilon>0$ such that $\left|f(z)-w_{0}\right|>\epsilon$ on $\left|z-z_{0}\right|=\delta$.
Now, as long as $\left|w-w_{0}\right|<\epsilon$, on $\left|z-z_{0}\right|=\delta$ we have $|F(z)|>\epsilon$, while $|G(z)|<\epsilon$, therefore, by Rouché's theorem function $g(z)=F(z)+G(z)$ has a zero inside $\left|z-z_{0}\right|<\delta$, since $F(z)$ has a zero.

Remark 8. Carefully analyzing the proof of the above theorem, we can strengthen its statement. In fact, in a small neighbourhood of $w_{0}$ equation $f(z)=w$ has exactly $n$ solutions (with multiplicities), where $n$ is the order of zero of $f(z)-w_{0}$. In particular, if $n=1$, then $f(z)$ is locally one-to-one.

A trivial, yet a very powerful corollary of the Open mapping theorem is the Maximum modulus principle.
Theorem 9 (Maximum modulus principle). If the modulus of a holomorphic function $f(z): U \rightarrow \mathbb{C}$ attains its maximum at $z_{0} \in U$, then $f(z)$ is constant.

Proof. Since $f(z)$ is non-constant, by open mapping theorem, for any $z_{0}$ there exists $\epsilon>0$ such that the open ball $B_{\epsilon}\left(f\left(z_{0}\right)\right)$ is in the range of $f(z)$. Therefore $\left|f\left(z_{0}\right)\right|$ cannot be the maximum of $|f(z)|$ for $z \in U$.

Remark 10. Alternatively, maximum modulus principle could be prove by using Cauchy's formula

$$
f\left(z_{0}\right)=\frac{1}{2 \pi \boldsymbol{i}} \int_{\left|\zeta-z_{0}\right|=r} \frac{f(\zeta)}{\zeta-z_{0}} d \zeta=\int_{0}^{2 \pi} f\left(z_{0}+r e^{i \alpha}\right) d \alpha
$$

The above identity holds for any $r>0$ such that $\overline{B_{r}\left(z_{0}\right)} \subset U$, therefore the function $f(z)$ must be constant in $B_{r}\left(z_{0}\right)$, which by "rigidity" of holomorphic functions implies that $f(z)$ is constant in the connected component of $U$ containing $z_{0}$.

One special case in which maximum modulus principle is often applied is characterized by the following theorem.

Theorem 11. If $f(z)$ is defined and continuous on a closed bounded set $E$ and analytic on the interior of $E$, then the maximum of $|f(z)|$ on $E$ is assumed on the boundary of $E$.

Proof. Since $E$ is compact, the maximum of $|f(z)|$ is attained at some point $z_{0} \in E$. If $z_{0}$ is a point in the interior of $E$, then by the maximum principle, $f(z)$ must be constant. Therefore either $f(z)$ is non-constant and its maximum is attained at the boundary of $E$, or it is constant, and its maximum is attained at every point of $E$.

