Yury Ustinovskiy Complex Variables MATH-GA.2451-001 Fall 2019

Lecture 10

Argument principle

Let f(z) ba a not identically zero holomorphic function in an open disk D. Often it is important to locate and
count zeros of f in D. The argument principle is a powerful tool solving this problem.

Let ¥ € D be a contour such that f(z) # 0 on y. Curve y is contained in an open disk D’ ¢ D and function f(z)
can only have finitely zeros in D’. Let Z:{C,-}?il be the set of zeros of f in D’ counted with multiplicities (i.e.,

if C is a zero of order k, then it appears k times in Z).
Theorem 1 (Argument principle). Under the above assumptions,

N

_ 1 f(2)
Z”(V’Cf)‘z_mLf(z) dz. (1)
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Proof. Since Z = {C;} is the set of all roots of f(z) in D’, there is a factorization

f(z2)=(z=C1)...(z—CN)g(2)

where function g(z) is holomorphic in D and does not have zeros in D’. Using the basic formula for the
derivative of the product, we find:

Function ¢’(z)/¢(z) is holomorphic in the whole D’, so by Cauchy’s theorem

gz,
J; 22 dz=0.

Therefore: N N
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Remark 2. Argument principle implies that I := ﬁ y J}’((ZZ))dz is an integer. In particular, if we continuously

deform y and/or f(z) then the value of I does not change as long as it is well-defined.

Given a parametrization y(t),t € [a,b] of y, one can rewrite expression (1) as follows:

A (f@, L (Tfee ), 1 (M), 1 (dw
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where I' = (f o ) is a contour in the complex plane C with coordinate w. In other words.

Y n(.¢j) =n(T,0). 2)

]

A special, yet the most useful version of argument principle occurres if y is a circle enclosing disk D’. In this
case every n(y,C;) = 1 for every zero inside D’, and the integral (1) computes the number of zeros of f(z) inside
disk D’. In particular, equation (2) says that this number equals the winding number of I' around the origin.

Example 3. If P(z) is a polynomial of degree n, then for a large R > 0

Plz) .
JI\ZI—R 502) dz =2min

Next theorem exploits the continuity of the integral L/f’(z)/f(z)dz in f to reduce computation of the number

of zeros of f to a possibly simpler function.
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Theorem 4 (Rouché’s theorem). Suppose that functions f(z) and g(z) are holomorphic in a neighbourhood of a
closed disk D. If

If (2)] > Ig(2)l

on the contour y = dD, then f and f + ¢ have the same number of zeros inside D.

Proof. Consider a function f;(z) := f(z) + tg(z) and let n; be the number of zeros of f;(z). Condition |f| > |g]
guarantees that f + tg does not vanish on y for t € [0, 1], therefore

1 (S
"= 2 | 0

The latter integral is well-defined and continuous in t for ¢ € [0,1], and takes only integer vales, therefore it is
constant. Hence ny = ny. O

Remark 5. Rouché’s theorem provide an alternative way to prove fundamental theorem of algebra. Given a
polynomial P(z) = z" + a,_1z""! +--- + ag we can find R large enough such that f(z) = z"* and g(z) = P(z) - z"
satisfy the assumptions of Theorem 4. Hence we can conclude that f(z) = z" and f(z) + g(z) = P(z) have the
same number of zeros in a large enough disk.

Exercise 1. Determine the number of zeros of f(z) = z> +3z% - 1in {1 <|z| < 2}.

Open mapping theorem. Maximum principle

One of the important consequences of argument principle if open mapping theorem.
Definition 6. A continuous map f: X — Y is called open, if image of any open set U C X is openin Y.
Exercise 2. Characterize open mappings f: R — R.

Theorem 7 (Open mapping theorem). If f(z) is holomorphic an non-constant in an open connected region, then
f(2) is open.
Proof. Take arbitrary open subset U of the domain of f and let us prove that f(U) is open.

Consider a point z; € U and define w := f(zg). We will prove that a small neighbourhood of wy is contained
in the image of U. Equivalently, we want to prove that function

has zeros for w in a small neighbourhood of w.

Choose 6 > 0 such that Bgs(zg) is contained in U and f(z) # wy on |z —zg| = 6. Then select € > 0 such that
|f(z) —wo| > € on |z—zy| = 6.

Now, as long as |w —wy| < €, on |z —zy| = 6 we have |F(z)| > €, while |G(z)| < ¢, therefore, by Rouché’s theorem
function g(z) = F(z) + G(z) has a zero inside |z — zy| < 6, since F(z) has a zero. O

Remark 8. Carefully analyzing the proof of the above theorem, we can strengthen its statement. In fact, in a
small neighbourhood of wy equation f(z) = w has exactly n solutions (with multiplicities), where 7 is the order
of zero of f(z) —wy. In particular, if n =1, then f(z) is locally one-to-one.

A trivial, yet a very powerful corollary of the Open mapping theorem is the Maximum modulus principle.

Theorem 9 (Maximum modulus principle). If the modulus of a holomorphic function f(z): U — C attains its
maximum at zy € U, then f(z) is constant.

Proof. Since f(z) is non-constant, by open mapping theorem, for any z, there exists € > 0 such that the open
ball B.(f(z)) is in the range of f(z). Therefore |f(zg)| cannot be the maximum of |f(z)| for ze U. O
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Remark 10. Alternatively, maximum modulus principle could be prove by using Cauchy’s formula

271
f(z0) ij JO 4= [ flao + ré)da
|C~zo|=

" 2mi ,C—2 0
The above identity holds for any r > 0 such that B,(zy) C U, therefore the function f(z) must be constant in
B,(zp), which by “rigidity” of holomorphic functions implies that f(z) is constant in the connected component
of U containing z.

One special case in which maximum modulus principle is often applied is characterized by the following
theorem.

Theorem 11. If f(z) is defined and continuous on a closed bounded set E and analytic on the interior of E, then the
maximum of |f (z)| on E is assumed on the boundary of E.

Proof. Since E is compact, the maximum of |f(z)| is attained at some point zy € E. If z; is a point in the
interior of E, then by the maximum principle, f(z) must be constant. Therefore either f(z) is non-constant and
its maximum is attained at the boundary of E, or it is constant, and its maximum is attained at every point
of E. O



