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Lecture 10

Argument principle

Let f (z) ba a not identically zero holomorphic function in an open disk D. Often it is important to locate and
count zeros of f in D. The argument principle is a powerful tool solving this problem.

Let γ ⊂ D be a contour such that f (z) , 0 on γ . Curve γ is contained in an open disk D ′ ( D and function f (z)
can only have finitely zeros in D ′ . Let Z={ζi}Nj=1 be the set of zeros of f in D ′ counted with multiplicities (i.e.,
if ζ is a zero of order k, then it appears k times in Z).

Theorem 1 (Argument principle). Under the above assumptions,

N∑
j=1

n(γ,ζj ) =
1

2πiii

∫
γ

f ′(z)
f (z)

dz. (1)

Proof. Since Z = {ζj } is the set of all roots of f (z) in D ′ , there is a factorization

f (z) = (z − ζ1) . . . (z − ζN )g(z)

where function g(z) is holomorphic in D and does not have zeros in D ′ . Using the basic formula for the
derivative of the product, we find:

f ′(z)
f (z)

=
1

z − ζ1
+ · · ·+ 1

z − ζN
+
g ′(z)
g(z)

.

Function g ′(z)/g(z) is holomorphic in the whole D ′ , so by Cauchy’s theorem∫
γ

g ′(z)
g(z)

dz = 0.

Therefore:
1

2πiii

∫
γ

f ′(z)
f (z)

dz =
1

2πiii

N∑
j=1

∫
γ

dz
z − ζj

=
N∑
j=1

n(γ,ζj ).

Remark 2. Argument principle implies that I := 1
2πiii

∫
γ
f ′(z)
f (z) dz is an integer. In particular, if we continuously

deform γ and/or f (z) then the value of I does not change as long as it is well-defined.

Given a parametrization γ(t), t ∈ [a,b] ofγ , one can rewrite expression (1) as follows:

1
2πiii

∫
γ

f ′(z)
f (z)

dz =
1

2πiii

∫ b

a

f ′(γ(t))γ ′(t)
f (γ(t))

dt =
1

2πiii

∫ b

a

(f ◦γ)′(t)
(f ◦γ)(t)

dt =
1

2πiii

∫
Γ

dw
w
,

where Γ = (f ◦γ) is a contour in the complex plane C with coordinate w. In other words.∑
j

n(γ,ζj ) = n(Γ ,0). (2)

A special, yet the most useful version of argument principle occurres if γ is a circle enclosing disk D ′ . In this
case every n(γ,ζj ) = 1 for every zero inside D ′ , and the integral (1) computes the number of zeros of f (z) inside
disk D ′ . In particular, equation (2) says that this number equals the winding number of Γ around the origin.

Example 3. If P (z) is a polynomial of degree n, then for a large R > 0∫
|z|=R

P ′(z)
P (z)

dz = 2πiiin

Next theorem exploits the continuity of the integral
∫
γ
f ′(z)/f (z)dz in f to reduce computation of the number

of zeros of f to a possibly simpler function.
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Theorem 4 (Rouché’s theorem). Suppose that functions f (z) and g(z) are holomorphic in a neighbourhood of a
closed disk D. If

|f (z)| > |g(z)|

on the contour γ = ∂D, then f and f + g have the same number of zeros inside D.

Proof. Consider a function ft(z) := f (z) + tg(z) and let nt be the number of zeros of ft(z). Condition |f | > |g |
guarantees that f + tg does not vanish on γ for t ∈ [0,1], therefore

nt =
1

2πiii

∫
γ

f ′t (z)
ft(t)

dz.

The latter integral is well-defined and continuous in t for t ∈ [0,1], and takes only integer vales, therefore it is
constant. Hence n0 = n1.

Remark 5. Rouché’s theorem provide an alternative way to prove fundamental theorem of algebra. Given a
polynomial P (z) = zn + an−1z

n−1 + · · · + a0 we can find R large enough such that f (z) = zn and g(z) = P (z) − zn
satisfy the assumptions of Theorem 4. Hence we can conclude that f (z) = zn and f (z) + g(z) = P (z) have the
same number of zeros in a large enough disk.

Exercise 1. Determine the number of zeros of f (z) = z5 + 3z2 − 1 in {1 < |z| < 2}.

Open mapping theorem. Maximum principle

One of the important consequences of argument principle if open mapping theorem.

Definition 6. A continuous map f : X→ Y is called open, if image of any open set U ⊂ X is open in Y .

Exercise 2. Characterize open mappings f : R→R.

Theorem 7 (Open mapping theorem). If f (z) is holomorphic an non-constant in an open connected region, then
f (z) is open.

Proof. Take arbitrary open subset U of the domain of f and let us prove that f (U ) is open.

Consider a point z0 ∈ U and define w0 := f (z0). We will prove that a small neighbourhood of w0 is contained
in the image of U . Equivalently, we want to prove that function

g(z) := f (z)−w = (f (z)−w0)︸      ︷︷      ︸
F(z)

+(w0 −w)︸   ︷︷   ︸
G(z)

has zeros for w in a small neighbourhood of w0.

Choose δ > 0 such that Bδ(z0) is contained in U and f (z) , w0 on |z − z0| = δ. Then select ε > 0 such that
|f (z)−w0| > ε on |z − z0| = δ.

Now, as long as |w −w0| < ε, on |z − z0| = δ we have |F(z)| > ε, while |G(z)| < ε, therefore, by Rouché’s theorem
function g(z) = F(z) +G(z) has a zero inside |z − z0| < δ, since F(z) has a zero.

Remark 8. Carefully analyzing the proof of the above theorem, we can strengthen its statement. In fact, in a
small neighbourhood of w0 equation f (z) = w has exactly n solutions (with multiplicities), where n is the order
of zero of f (z)−w0. In particular, if n = 1, then f (z) is locally one-to-one.

A trivial, yet a very powerful corollary of the Open mapping theorem is the Maximum modulus principle.

Theorem 9 (Maximum modulus principle). If the modulus of a holomorphic function f (z) : U → C attains its
maximum at z0 ∈U , then f (z) is constant.

Proof. Since f (z) is non-constant, by open mapping theorem, for any z0 there exists ε > 0 such that the open
ball Bε(f (z0)) is in the range of f (z). Therefore |f (z0)| cannot be the maximum of |f (z)| for z ∈U .
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Remark 10. Alternatively, maximum modulus principle could be prove by using Cauchy’s formula

f (z0) =
1

2πiii

∫
|ζ−z0 |=r

f (ζ)
ζ − z0

dζ =
∫ 2π

0
f (z0 + reiα)dα.

The above identity holds for any r > 0 such that Br (z0) ⊂ U , therefore the function f (z) must be constant in
Br (z0), which by “rigidity” of holomorphic functions implies that f (z) is constant in the connected component
of U containing z0.

One special case in which maximum modulus principle is often applied is characterized by the following
theorem.

Theorem 11. If f (z) is defined and continuous on a closed bounded set E and analytic on the interior of E, then the
maximum of |f (z)| on E is assumed on the boundary of E.

Proof. Since E is compact, the maximum of |f (z)| is attained at some point z0 ∈ E. If z0 is a point in the
interior of E, then by the maximum principle, f (z) must be constant. Therefore either f (z) is non-constant and
its maximum is attained at the boundary of E, or it is constant, and its maximum is attained at every point
of E.


