Lecture 12

Automorphisms of basic complex regions

 \mathbb{D}

We start the lecture with an important technical tool useful for studying self-maps of bounded domains.

Theorem 1 (Schwarz's lemma). If f(z) is holomorphic in \mathbb{D} and satisfies $|f(z)| \leq 1$, f(0) = 0 then

$$|f(z)| \leq |z| \quad and \quad |f'(0)| \leq 1. \tag{1}$$

If for some $z \neq 0$ one of the inequalities of (1) turns into the equality, then f(z) = az for some constant a with |a| = 1.

Proof. Since f(z) has zero at z = 0, the quotient $f_1(z) := \frac{f(z)}{z}$ extends to a well-defined holomorphic function in \mathbb{D} .

On a circle |z| = r < 1 we have that $|f_1(z)| \le 1/r$. Therefore, by maximum principle the same is true in the disk $\{|z| \le r\}$. Since $r \in (0, 1)$ is arbitrary, we conclude that $|f_1(z)| < 1$, which is equivalent to the inequality statement of the theorem.

If equality occurs at a point z_0 , then $|f_1(z)|$ attains maximum at an interior point, hence $f_1(z)$ must be a constant.

Theorem 2 (Schwarz-Pick theorem). Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic. Then for all $z_1, z_2 \in \mathbb{D}$

$$\left|\frac{f(z_1) - f(z_2)}{1 - \overline{f(z_1)}f(z_2)}\right| \leqslant \left|\frac{z_1 - z_2}{1 - \overline{z_1}z_2}\right|^1$$

Schwarz lemma allows to classify all automorphisms of the unit disk. First, note that for any $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ and any $b \in \mathbb{D}$ the map

$$F_{\alpha,b}(z) := \alpha \frac{z-b}{1-z\overline{b}} \tag{2}$$

is an automorphism of \mathbb{D} , and the set of such maps (2) form a group.

Theorem 3. Let $f: \mathbb{D} \to \mathbb{D}$ be an holomorphic bijective map. Then f must be of the form $F_{\alpha,b}$ for some b and α .

Proof. Consider a map $g(z) := (F_{1,f(0)} \circ f)(z)$. This map is an automorphism of \mathbb{D} such that g(0) = 0. Clearly, either g'(0) or $(g^{-1})'(0) = 1/g'(0)$ must have modulus ≥ 1 . Therefore by Schwarz lemma we have that $g(z) = \alpha z$ for some α . Hence

$$f(z) = F_{1,f(0)}^{-1}(\alpha z)$$

which is also of the form (2).

Proof. Compose f(z) with a fractional automorphisms of \mathbb{D}

$$g(z) := (F_2 \circ f \circ F_1)(z)$$

such that $F_1: 0 \mapsto z_1$ and $F_2: f(z_1) \mapsto 0$. Then *g* satisfies the usual Schwarz lemma

 $|g(z)| \leq |z|.$

which implies the stated inequality with $z_2 := F_1^{-1}(z)$.

¹In other words, f(z) can not increase hyperbolic distance in \mathbb{D} .

 \mathbb{C}

If $f\colon \mathbb{C}\to\mathbb{C}$ is an holomorphic bijective map, then f must by of the form

$$F_{a,b}(z) = az + b$$

by the problem form homework. Let us record its proof for completeness.

Proof. Function f(z) has an isolated singularity at ∞ . We claim that it must be a pole of order 1.

First, we rule out essential singularity. If $\infty \in \widehat{\mathbb{C}}$ is an essential singularity, then f maps the complement of \overline{D} to an open everywhere dense set Z. Such set Z must intersect the open set $f(\mathbb{D})$, which contradicts injectivity of f(z).

Clearly f(z) can't have a removable singularity at ∞ , since in this case f(z) would be entire and bounded, and Liouville theorem implies that such f(z) is constant.

Hence f(z) has a pole at ∞ . But we know that the function which has only poles as its singularities must be a rational function P(z)/Q(z). Rational function is injective if and only if it is a polynomial of degree 1.

$\widehat{\mathbb{C}}$

We already mentioned that any function of the form

$$F(z) = \frac{az+b}{cz+d}$$
(3)

with $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$ is an automorphism of $\widehat{\mathbb{C}}$. We claim that there no other automorphisms of $\widehat{\mathbb{C}}$. Indeed, if $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is such a map, then we can compose it with a map *F* of the form (3), which takes $f(\infty)$ to ∞ . Then $F \circ f$ is an automorphism of \mathbb{C} , and those, as was already described, are of also of the form (3).