Lecture 12

Automorphisms of basic complex regions

D

We start the lecture with an important technical tool useful for studying self-maps of bounded domains.
Theorem 1 (Schwarz's lemma). If $f(z)$ is holomorphic in \mathbb{D} and satisfies $|f(z)| \leqslant 1, f(0)=0$ then

$$
\begin{equation*}
|f(z)| \leqslant|z| \quad \text { and } \quad\left|f^{\prime}(0)\right| \leqslant 1 \tag{1}
\end{equation*}
$$

If for some $z \neq 0$ one of the inequalities of (1) turns into the equality, then $f(z)=$ az for some constant a with $|a|=1$.
Proof. Since $f(z)$ has zero at $z=0$, the quotient $f_{1}(z):=\frac{f(z)}{z}$ extends to a well-defined holomorphic function in \mathbb{D}.

On a circle $|z|=r<1$ we have that $\left|f_{1}(z)\right| \leqslant 1 / r$. Therefore, by maximum principle the same is true in the disk $\{|z| \leqslant r\}$. Since $r \in(0,1)$ is arbitrary, we conclude that $\left|f_{1}(z)\right|<1$, which is equivalent to the inequality statement of the theorem.

If equality occurs at a point z_{0}, then $\left|f_{1}(z)\right|$ attains maximum at an interior point, hence $f_{1}(z)$ must be a constant.

Theorem 2 (Schwarz-Pick theorem). Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic. Then for all $z_{1}, z_{2} \in \mathbb{D}$

$$
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{1-\overline{f\left(z_{1}\right)} f\left(z_{2}\right)}\right| \leqslant\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1} z_{2}}}\right| 1
$$

Schwarz lemma allows to classify all automorphisms of the unit disk. First, note that for any $\alpha \in \mathbb{C}$ with $|\alpha|=1$ and any $b \in \mathbb{D}$ the map

$$
\begin{equation*}
F_{\alpha, b}(z):=\alpha \frac{z-b}{1-z \bar{b}} \tag{2}
\end{equation*}
$$

is an automorphism of \mathbb{D}, and the set of such maps (2) form a group.
Theorem 3. Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be an holomorphic bijective map. Then f must be of the form $F_{\alpha, b}$ for some b and α.
Proof. Consider a map $g(z):=\left(F_{1, f(0)} \circ f\right)(z)$. This map is an automorphism of \mathbb{D} such that $g(0)=0$. Clearly, either $g^{\prime}(0)$ or $\left(g^{-1}\right)^{\prime}(0)=1 / g^{\prime}(0)$ must have modulus $\geqslant 1$. Therefore by Schwarz lemma we have that $g(z)=\alpha z$ for some α. Hence

$$
f(z)=F_{1, f(0)}^{-1}(\alpha z)
$$

which is also of the form (2).
Proof. Compose $f(z)$ with a fractional automorphisms of \mathbb{D}

$$
g(z):=\left(F_{2} \circ f \circ F_{1}\right)(z)
$$

such that $F_{1}: 0 \mapsto z_{1}$ and $F_{2}: f\left(z_{1}\right) \mapsto 0$. Then g satisfies the usual Schwarz lemma

$$
|g(z)| \leqslant|z| .
$$

$\underline{\text { which implies the stated inequality with } z_{2}}:=F_{1}^{-1}(z)$.

[^0]
\mathbb{C}

If $f: \mathbb{C} \rightarrow \mathbb{C}$ is an holomorphic bijective map, then f must by of the form

$$
F_{a, b}(z)=a z+b
$$

by the problem form homework. Let us record its proof for completeness.
Proof. Function $f(z)$ has an isolated singularity at ∞. We claim that it must be a pole of order 1 .
First, we rule out essential singularity. If $\infty \in \widehat{\mathbb{C}}$ is an essential singularity, then f maps the complement of \bar{D} to an open everywhere dense set Z. Such set Z must intersect the open set $f(\mathbb{D})$, which contradicts injectivity of $f(z)$.

Clearly $f(z)$ can't have a removable singularity at ∞, since in this case $f(z)$ would be entire and bounded, and Liouville theorem implies that such $f(z)$ is constant.
Hence $f(z)$ has a pole at ∞. But we know that the function which has only poles as its singularities must be a rational function $P(z) / Q(z)$. Rational function is injective if and only if it is a polynomial of degree 1 .

$\widehat{\mathbb{C}}$

We already mentioned that any function of the form

$$
\begin{equation*}
F(z)=\frac{a z+b}{c z+d} \tag{3}
\end{equation*}
$$

with $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq 0$ is an automorphism of $\widehat{\mathbb{C}}$. We claim that there no other automorphisms of $\widehat{\mathbb{C}}$. Indeed, if $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is such a map, then we can compose it with a map F of the form (3), which takes $f(\infty)$ to ∞. Then $F \circ f$ is an automorphism of \mathbb{C}, and those, as was already described, are of also of the form (3).

[^0]: ${ }^{1}$ In other words, $f(z)$ can not increase hyperbolic distance in \mathbb{D}.

