Lecture 13

Calculus of residues

Residues

Assume that function $f(z)$ is holomorphic in a region $U-\left\{z_{0}\right\}$ and has a singularity at z_{0}. As we know, in under this assumption, Cauchy's theorem is not necessarily valid, in particular, for a circle $C \subset U$ centered at z_{0} the integral

$$
\int_{C} f(z) d z
$$

might be non-zero.
To capture the failure of Cauchy's theorem quantitatively, we introduce a notion of residue of $f(z)$ at z_{0}.
Definition 1. A residue of $f(z)$ at z_{0} is

$$
\operatorname{res}_{z_{0}} f(z):=\frac{1}{2 \pi i} \int_{C} f(z) d z
$$

where $C \subset U$ is a circle centered at z_{0}.
Lemma 2. The residue $\operatorname{res}_{z_{0}} f(z)$ does not depend on the choice of circle C centered at z_{0}.
Proof. Let C_{r} and C_{R} be two circles centered at z_{0} of radii r and R respectively. We claim that

$$
\int_{C_{r}} f(z) d z=\int_{C_{R}} f(z) d z
$$

Indeed consider a keyhole-like contour γ joining two circles of radii r and R.

By the general form of Cauchy's theorem we have $\int_{\gamma} f(z) d z=0$. Hence, letting the corridor width to go to zero, we find

$$
0=\int_{\gamma} f(z) d z=\int_{C_{R}} f(z) d z-\int_{C_{r}} f(z) d z
$$

Remark 3. Clearly, if $\rho=\operatorname{res}_{z_{0}} d z$, then

$$
\begin{equation*}
\int_{C}\left(f(z)-\frac{\rho}{z-z_{0}}\right) d z=0 \tag{1}
\end{equation*}
$$

for any circle C centered at z_{0}. Moreover, number $\rho \in \mathbb{C}$ such that (1) hold is unique.
Exercise 1. Any closed curve γ in an annulus $\{r<|z|<R\}$ is homotopic to a curve $C_{n}(t)=r^{\prime} e^{2 \pi i n t}$, where $r^{\prime} \in(r, R), t \in[0,1]$ and $n=n(\gamma, 0)$.
In other words, $C_{n}(t)$ winds around 0 exactly $n=n(\gamma, 0)$ times with a constant angular speed.
Lemma 4. For a ball $B_{\epsilon}\left(z_{0}\right) \subset U$, function $f(z)-\frac{\rho}{z-z_{0}}$ has a single-valued antiderivative in $B_{\epsilon}\left(z_{0}\right)-\left\{z_{0}\right\}$.
Proof. By the exercise, any curve γ is homotopic to some curve C_{n}, and by (1) we have

$$
\int_{\gamma} f(z) d z=\int_{C_{n}} f(z) d z=n \int_{C} f(z) d z=0
$$

Since $\int_{\gamma} f(z) d z=0$ for any curve $\gamma \subset B_{\epsilon}\left(z_{0}\right)-\left\{z_{0}\right\}$, function $f(z)$ has an antiderivative in this region.

Residue at z_{0} is hard to compute in general if function $f(z)$ has an essential singularity at z_{0}. The situation is entirely different if z_{0} is a pole. As we know, in this case, we can isolate the principle part of the pole:

$$
\begin{equation*}
f(z)=\underbrace{\frac{a_{-n}}{\left(z-z_{0}\right)^{n}}+\cdots+\frac{a_{-1}}{z-z_{0}}}+\varphi(z) \tag{2}
\end{equation*}
$$

where $\varphi(z)$ is a holomorphic function in neighborhood of z_{0}. Let C be a circle centered at z_{0}.
The contour integral \int_{C} for all terms of (2) vanishes except for the integral

$$
\begin{equation*}
\int_{C} \frac{a_{-1}}{z-z_{0}} d z=2 \pi i a_{-1} \tag{3}
\end{equation*}
$$

Equation (3) gives a particularly simple formula for the residue of a function at its pole:

$$
\operatorname{res}_{z_{0}} f(z)=a_{-1}
$$

where a_{-1} is the coefficient in front of $\left(z-z_{0}\right)^{-1}$ term in the pole's principle part.
Remark 5. If function $f(z)$ has a simple pole at z_{0} (i.e., of order 1), then a_{-1} can be recovered as

$$
a_{-1}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

In general, if the order of the pole is $n \geqslant 1$, one has the following formula

$$
a_{-1}=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}}\left(\left(z-z_{0}\right)^{n} f(z)\right)^{(n-1)}
$$

which follows immediately from (2).
Example 6. Function $f(z)=\frac{e^{z}}{z^{n}}$ has a pole of order n at $z=0$. To compute its residue, we use the Taylor's expansion of e^{z} :

$$
e^{z}=\sum_{z=1}^{n} \frac{z^{n}}{n!}
$$

and find that the principle part of $f(z)$ to be

$$
\sum_{i=0}^{n-1} \frac{1}{i!z^{n-i}}
$$

so $\operatorname{res}_{0} f(z)=a_{-1}=\frac{1}{(n-1)!}$

Residue theorem

Assume that curve γ bounds an open region U^{1}. Consider function $f(z)$ which is holomorphic in $U-\left\{z_{1}, \ldots z_{k}\right\}$, continuous in $\bar{U}-\left\{z_{1}, \ldots, z_{k}\right\}$ and has isolated singularities at z_{i}.
Theorem 7. For function $f(z)$ as above we have

$$
\begin{equation*}
\int_{\gamma} f(z) d z=2 \pi i \sum_{i=1}^{k} \operatorname{res}_{z_{i}} f(z) \tag{4}
\end{equation*}
$$

Proof. Enclose each z_{i} in a small circle C_{i} and connected all C_{i} 's with γ with non-intersecting arcs γ_{i}. Then we can arrange C_{i} 's (with opposite orientations), γ and γ_{i} 's in a keyhole-like contour Γ. Contour Γ bounds a simply region $U-\cup_{i} \gamma_{i}$.
Hence

$$
\int_{\Gamma} f(z) d z=0
$$

On other hand,

$$
\int_{\Gamma} f(z) d z=\int_{\gamma} f(z) d z-\sum_{i} \int_{C_{i}} f(z) d z=\int_{\gamma} f(z) d z-2 \pi i \sum_{i} \operatorname{res}_{z_{i}} f(z)
$$

which concludes the proof.

[^0]Identity (4) can be used in two directions: first is a powerful tool for the evaluation of definite integrals, as we will see later. On other hand, it could be used to estimate residues and locate the poles of a given function.
One can also prove the following stronger version of Residue theorem, but we will not need it in our course.
Theorem 8. Let $\gamma \subset U$ be a contractible loop, such that $z_{i} \notin \gamma$. Then for any function $f(z)$ as above we have

$$
\int_{\gamma} f(z) d z=\sum_{i} n\left(\gamma, z_{i}\right) \operatorname{res}_{z_{i}} f(z)
$$

In our previous setting γ was the boundary of a simply connected region and all $n\left(\gamma, z_{i}\right)=1$.

Evaluation of definite integrals

In this section, through a series of examples we demonstrate how to use residues formula to evaluate various definite integrals.
Example 9. Consider integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+\cos \theta}
$$

where $a>1$ is a constant. If we let $z=e^{i \theta}$, then $d z=\boldsymbol{i} e^{i \theta} d \theta$ and $\cos \theta=\frac{1}{2}\left(z+z^{-1}\right)$ so the integral can be rewritten as

$$
\int_{|z|=1} \frac{1}{a+\frac{1}{2}\left(z+z^{-1}\right)} \frac{d z}{\boldsymbol{i} z}=-2 \boldsymbol{i} \int_{|z|=1} \frac{d z}{z^{2}+2 a z+1}
$$

The integrand $f(z)=1 /\left(z^{2}+2 a z+1\right)$ has poles at $z_{1}=-a-\sqrt{a^{2}-1}$ and $z_{2}=-a+\sqrt{a^{2}-1}$. Clearly $\left|z_{1}\right|>1$ and $\left|z_{2}\right|<1$, hence function $f(z)$ has only one pole at z_{2} in the unit disk \mathbb{D}, and

$$
\operatorname{res}_{z_{2}} \frac{1}{z^{2}+2 a z+1}=\lim _{z \rightarrow z_{2}}\left(z-z_{2}\right) \frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)}=\frac{1}{z_{2}-z_{1}}=\frac{1}{2 \sqrt{a^{2}-1}}
$$

Therefore

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+\cos \theta}=2 \pi i \cdot(-2 i) \cdot \frac{1}{\sqrt{a^{2}-1}}=\frac{2 \pi}{\sqrt{a^{2}-1}}
$$

A very common application of residue theorem occurs when we want to compute a definite integral of the form $\int_{-\infty}^{+\infty} f(x) d x$. In the case we first must choose a closed contour γ such that the integral $\int_{\gamma} f(z) d z$ can be estimated in terms of $\int_{-\infty}^{\infty} f(x) d x$.

Example 10.

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x, \quad 0<a<1
$$

Let $f(z)=\frac{e^{a z}}{1+e^{z}}$. Consider the contour γ_{R} consisting of a rectangle with vertices at $-R, R, R+2 \pi i,-R+2 \pi i$.

Inside this contour $f(z)$ has only one pole at $z_{0}=\pi i$, and residue at this point is

$$
\lim _{z \rightarrow \pi i}(z-\pi i) f(z)=e^{a \pi i} \lim _{z \rightarrow \pi i} \frac{z-\pi i}{e^{z}-e^{\pi i}}
$$

The last limit is the inverse of

$$
\lim _{z \rightarrow \pi i} \frac{e^{z}-e^{\pi i}}{z-\pi i}=\left.\left(e^{z}\right)\right|_{z=\pi i} ^{\prime}=e^{\pi i}=-1
$$

hence

$$
\operatorname{res}_{\pi i} f(z)=-e^{a \pi i}
$$

Now we investigate the integrals of $f(z)$ over the sides of rectangle. If we denote by I_{R} the integral over the lower side of the rectangle:

$$
I_{R}=\int_{-R}^{R} f(z) d z
$$

then $I_{R} \rightarrow I$ as $R \rightarrow \infty$, where I is the integral of interest. The integral over the top side of the rectangle is then

$$
-e^{2 \pi i a} I_{R}
$$

(with minus sign because of the opposite orientation). Finally integrals over the vertical sides can be bounded as

$$
\int_{0}^{ \pm R+2 \pi i} f(z) d z \leqslant \int_{0}^{2 \pi}\left|\frac{e^{a(R+i t)}}{1+e^{R+i t}}\right| d t \leqslant C e^{(a-1) R}
$$

Since $a<1$ these integrals go to zero as $R \rightarrow \infty$. Collecting everything together we find:

$$
I-I e^{2 \pi i a}=2 \pi i \operatorname{res}_{\pi i} f(z)=-2 \pi i e^{a \pi i}
$$

and

$$
I=-2 \pi i \frac{e^{a \pi i}}{1-e^{2 a \pi i}}=\pi \frac{2 i}{e^{a \pi i}-e^{-a \pi i}}=\frac{\pi}{\sin \pi a}
$$

[^0]: ${ }^{1}$ As always, we assume that curve γ is positively oriented, which means that region U stays on the left as we follow γ

