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Lecture 13

Calculus of residues

Residues

Assume that function f (z) is holomorphic in a region U −{z0} and has a singularity at z0. As we know, in under
this assumption, Cauchy’s theorem is not necessarily valid, in particular, for a circle C ⊂ U centered at z0 the
integral ∫

C
f (z)dz

might be non-zero.

To capture the failure of Cauchy’s theorem quantitatively, we introduce a notion of residue of f (z) at z0.

Definition 1. A residue of f (z) at z0 is

resz0
f (z) :=

1
2πiii

∫
C
f (z)dz

where C ⊂U is a circle centered at z0.

Lemma 2. The residue resz0
f (z) does not depend on the choice of circle C centered at z0.

Proof. Let Cr and CR be two circles centered at z0 of radii r and R respectively. We claim that∫
Cr

f (z)dz =
∫
CR

f (z)dz.

Indeed consider a keyhole-like contour γ joining two circles of radii r and R.

z0

γ

By the general form of Cauchy’s theorem we have
∫
γ
f (z)dz = 0. Hence, letting the corridor width to go to zero,

we find

0 =
∫
γ
f (z)dz =

∫
CR

f (z)dz −
∫
Cr

f (z)dz.

Remark 3. Clearly, if ρ = resz0
dz, then ∫

C

(
f (z)−

ρ

z − z0

)
dz = 0 (1)

for any circle C centered at z0. Moreover, number ρ ∈C such that (1) hold is unique.

Exercise 1. Any closed curve γ in an annulus {r < |z| < R} is homotopic to a curve Cn(t) = r ′e2πiiint , where
r ′ ∈ (r,R), t ∈ [0,1] and n = n(γ,0).

In other words, Cn(t) winds around 0 exactly n = n(γ,0) times with a constant angular speed.

Lemma 4. For a ball Bε(z0) ⊂U , function f (z)− ρ
z−z0

has a single-valued antiderivative in Bε(z0)− {z0}.

Proof. By the exercise, any curve γ is homotopic to some curve Cn, and by (1) we have∫
γ
f (z)dz =

∫
Cn

f (z)dz = n
∫
C
f (z)dz = 0.

Since
∫
γ
f (z)dz = 0 for any curve γ ⊂ Bε(z0)− {z0}, function f (z) has an antiderivative in this region.
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Residue at z0 is hard to compute in general if function f (z) has an essential singularity at z0. The situation is
entirely different if z0 is a pole. As we know, in this case, we can isolate the principle part of the pole:

f (z) =
a−n

(z − z0)n
+ · · ·+ a−1

z − z0︸                     ︷︷                     ︸+ϕ(z) (2)

where ϕ(z) is a holomorphic function in neighborhood of z0. Let C be a circle centered at z0.

The contour integral
∫
C

for all terms of (2) vanishes except for the integral∫
C

a−1

z − z0
dz = 2πiiia−1. (3)

Equation (3) gives a particularly simple formula for the residue of a function at its pole:

resz0
f (z) = a−1

where a−1 is the coefficient in front of (z − z0)−1 term in the pole’s principle part.

Remark 5. If function f (z) has a simple pole at z0 (i.e., of order 1), then a−1 can be recovered as

a−1 = lim
z→z0

(z − z0)f (z).

In general, if the order of the pole is n > 1, one has the following formula

a−1 =
1

(n− 1)!
lim
z→z0

((z − z0)nf (z))(n−1)

which follows immediately from (2).

Example 6. Function f (z) = ez
zn has a pole of order n at z = 0. To compute its residue, we use the Taylor’s

expansion of ez:

ez =
n∑
z=1

zn

n!

and find that the principle part of f (z) to be
n−1∑
i=0

1
i!zn−i

so res0f (z) = a−1 = 1
(n−1)!

Residue theorem

Assume that curve γ bounds an open regionU1. Consider function f (z) which is holomorphic inU −{z1, . . . zk},
continuous in U − {z1, . . . , zk} and has isolated singularities at zi .

Theorem 7. For function f (z) as above we have∫
γ
f (z)dz = 2πiii

k∑
i=1

reszi f (z). (4)

Proof. Enclose each zi in a small circle Ci and connected all Ci ’s with γ with non-intersecting arcs γi . Then
we can arrange Ci ’s (with opposite orientations), γ and γi ’s in a keyhole-like contour Γ . Contour Γ bounds a
simply region U −∪iγi .
Hence ∫

Γ

f (z)dz = 0

On other hand, ∫
Γ

f (z)dz =
∫
γ
f (z)dz −

∑
i

∫
Ci

f (z)dz =
∫
γ
f (z)dz − 2πiii

∑
i

reszi f (z)

which concludes the proof.

1As always, we assume that curve γ is positively oriented, which means that region U stays on the left as we follow γ
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Identity (4) can be used in two directions: first is a powerful tool for the evaluation of definite integrals, as we
will see later. On other hand, it could be used to estimate residues and locate the poles of a given function.

One can also prove the following stronger version of Residue theorem, but we will not need it in our course.

Theorem 8. Let γ ⊂U be a contractible loop, such that zi < γ . Then for any function f (z) as above we have∫
γ
f (z)dz =

∑
i

n(γ,zi)reszi f (z).

In our previous setting γ was the boundary of a simply connected region and all n(γ,zi) = 1.

Evaluation of definite integrals

In this section, through a series of examples we demonstrate how to use residues formula to evaluate various
definite integrals.

Example 9. Consider integral ∫ 2π

0

dθ
a+ cosθ

where a > 1 is a constant. If we let z = eiiiθ , then dz = iiieiiiθdθ and cosθ = 1
2 (z + z−1) so the integral can be

rewritten as ∫
|z|=1

1

a+ 1
2 (z+ z−1)

dz
iiiz

= −2iii
∫
|z|=1

dz

z2 + 2az+ 1
.

<

=

z2

The integrand f (z) = 1/(z2 + 2az + 1) has poles at z1 = −a −
√
a2 − 1 and z2 = −a +

√
a2 − 1. Clearly |z1| > 1 and

|z2| < 1, hence function f (z) has only one pole at z2 in the unit disk D, and

resz2

1
z2 + 2az+ 1

= lim
z→z2

(z − z2)
1

(z − z1)(z − z2)
=

1
z2 − z1

=
1

2
√
a2 − 1

Therefore ∫ 2π

0

dθ
a+ cosθ

= 2πiii · (−2iii) · 1
√
a2 − 1

=
2π
√
a2 − 1

.

A very common application of residue theorem occurs when we want to compute a definite integral of the
form

∫ +∞
−∞ f (x)dx. In the case we first must choose a closed contour γ such that the integral

∫
γ
f (z)dz can be

estimated in terms of
∫∞
−∞ f (x)dx.

Example 10. ∫ ∞
−∞

eax

1 + ex
dx, 0 < a < 1.

Let f (z) = eaz
1+ez . Consider the contour γR consisting of a rectangle with vertices at −R,R,R+ 2πiii,−R+ 2πiii.

<

=
2πiii

z0 = πiii

γR

R−R
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Inside this contour f (z) has only one pole at z0 = πiii, and residue at this point is

lim
z→πiii

(z −πiii)f (z) = eaπiii lim
z→πiii

z −πiii
ez − eπiii

The last limit is the inverse of

lim
z→πiii

ez − eπiii

z −πiii
= (ez)

∣∣∣∣′
z=πiii

= eπiii = −1,

hence
resπiiif (z) = −eaπiii .

Now we investigate the integrals of f (z) over the sides of rectangle. If we denote by IR the integral over the
lower side of the rectangle:

IR =
∫ R

−R
f (z)dz,

then IR→ I as R→∞, where I is the integral of interest. The integral over the top side of the rectangle is then

−e2πiiiaIR

(with minus sign because of the opposite orientation). Finally integrals over the vertical sides can be bounded
as ∫ ±R+2πiii

0
f (z)dz 6

∫ 2π

0

∣∣∣∣∣∣ ea(R+iiit)

1 + eR+iiit

∣∣∣∣∣∣dt 6 Ce(a−1)R.

Since a < 1 these integrals go to zero as R→∞. Collecting everything together we find:

I − Ie2πiiia = 2πiii resπiiif (z) = −2πiiieaπiii .

and

I = −2πiii
eaπiii

1− e2aπiii
= π

2iii
eaπiii − e−aπiii

=
π

sinπa
.


