Lecture 13

Calculus of residues

Residues

Assume that function f(z) is holomorphic in a region $U - \{z_0\}$ and has a singularity at z_0 . As we know, in under this assumption, Cauchy's theorem is not necessarily valid, in particular, for a circle $C \subset U$ centered at z_0 the integral $\int_{C} f(z) dz$

might be non-zero.

To capture the failure of Cauchy's theorem quantitatively, we introduce a notion of *residue* of f(z) at z_0 .

Definition 1. A *residue* of f(z) at z_0 is

$$\operatorname{res}_{z_0} f(z) := \frac{1}{2\pi i} \int_C f(z) dz$$

where $C \subset U$ is a circle centered at z_0 .

Lemma 2. The residue $res_{z_0} f(z)$ does not depend on the choice of circle C centered at z_0 .

Proof. Let C_r and C_R be two circles centered at z_0 of radii r and R respectively. We claim that

$$\int_{C_r} f(z) dz = \int_{C_R} f(z) dz.$$

Indeed consider a keyhole-like contour γ joining two circles of radii r and R.

By the general form of Cauchy's theorem we have $\int_{\gamma} f(z) dz = 0$. Hence, letting the *corridor* width to go to zero, we find

$$0 = \int_{\gamma} f(z)dz = \int_{C_R} f(z)dz - \int_{C_r} f(z)dz.$$

Remark 3. Clearly, if $\rho = \operatorname{res}_{z_0} dz$, then

$$\int_{C} \left(f(z) - \frac{\rho}{z - z_0} \right) dz = 0 \tag{1}$$

for any circle *C* centered at z_0 . Moreover, number $\rho \in \mathbb{C}$ such that (1) hold is unique.

Exercise 1. Any closed curve γ in an annulus $\{r < |z| < R\}$ is homotopic to a curve $C_n(t) = r'e^{2\pi i nt}$, where $r' \in (r, R)$, $t \in [0, 1]$ and $n = n(\gamma, 0)$.

In other words, $C_n(t)$ winds around 0 exactly $n = n(\gamma, 0)$ times with a constant angular speed.

Lemma 4. For a ball $B_{\epsilon}(z_0) \subset U$, function $f(z) - \frac{\rho}{z-z_0}$ has a single-valued antiderivative in $B_{\epsilon}(z_0) - \{z_0\}$.

Proof. By the exercise, any curve γ is homotopic to some curve C_n , and by (1) we have

$$\int_{\gamma} f(z)dz = \int_{C_n} f(z)dz = n \int_C f(z)dz = 0.$$

Since $\int_{\gamma} f(z) dz = 0$ for any curve $\gamma \subset B_{\epsilon}(z_0) - \{z_0\}$, function f(z) has an antiderivative in this region.

Residue at z_0 is hard to compute in general if function f(z) has an essential singularity at z_0 . The situation is entirely different if z_0 is a pole. As we know, in this case, we can isolate the principle part of the pole:

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \dots + \frac{a_{-1}}{z - z_0} + \varphi(z)$$
(2)

where $\varphi(z)$ is a holomorphic function in neighborhood of z_0 . Let *C* be a circle centered at z_0 . The contour integral \int_C for all terms of (2) vanishes except for the integral

$$\int_{C} \frac{a_{-1}}{z - z_{0}} dz = 2\pi i a_{-1}.$$
(3)

Equation (3) gives a particularly simple formula for the residue of a function at its pole:

$$\operatorname{res}_{z_0} f(z) = a_{-1}$$

where a_{-1} is the coefficient in front of $(z - z_0)^{-1}$ term in the pole's principle part.

Remark 5. If function f(z) has a *simple* pole at z_0 (i.e., of order 1), then a_{-1} can be recovered as

$$a_{-1} = \lim_{z \to z_0} (z - z_0) f(z)$$

In general, if the order of the pole is $n \ge 1$, one has the following formula

$$a_{-1} = \frac{1}{(n-1)!} \lim_{z \to z_0} ((z-z_0)^n f(z))^{(n-1)}$$

which follows immediately from (2).

Example 6. Function $f(z) = \frac{e^z}{z^n}$ has a pole of order *n* at z = 0. To compute its residue, we use the Taylor's expansion of e^z :

$$e^z = \sum_{z=1}^n \frac{z^n}{n!}$$

and find that the principle part of f(z) to be

$$\sum_{i=0}^{n-1} \frac{1}{i! z^{n-i}}$$

so $\operatorname{res}_0 f(z) = a_{-1} = \frac{1}{(n-1)!}$

Residue theorem

Assume that curve γ bounds an open region U^1 . Consider function f(z) which is holomorphic in $U - \{z_1, \dots, z_k\}$, continuous in $\overline{U} - \{z_1, \dots, z_k\}$ and has isolated singularities at z_i .

Theorem 7. For function f(z) as above we have

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{i=1}^{k} \operatorname{res}_{z_i} f(z).$$
(4)

Proof. Enclose each z_i in a small circle C_i and connected all C_i 's with γ with non-intersecting arcs γ_i . Then we can arrange C_i 's (with opposite orientations), γ and γ_i 's in a keyhole-like contour Γ . Contour Γ bounds a simply region $U - \bigcup_i \gamma_i$.

Hence

$$\int_{\Gamma} f(z) dz = 0$$

On other hand,

$$\int_{\Gamma} f(z)dz = \int_{\gamma} f(z)dz - \sum_{i} \int_{C_{i}} f(z)dz = \int_{\gamma} f(z)dz - 2\pi i \sum_{i} \operatorname{res}_{z_{i}} f(z)$$

which concludes the proof.

¹As always, we assume that curve γ is *positively oriented*, which means that region U stays on the *left* as we follow γ

Fall 2019

Identity (4) can be used in two directions: first is a powerful tool for the evaluation of definite integrals, as we will see later. On other hand, it could be used to estimate residues and locate the poles of a given function. One can also prove the following stronger version of Residue theorem, but we will not need it in our course. **Theorem 8.** Let $\gamma \subset U$ be a contractible loop, such that $z_i \notin \gamma$. Then for any function f(z) as above we have

$$\int_{\gamma} f(z) dz = \sum_{i} n(\gamma, z_i) \operatorname{res}_{z_i} f(z)$$

In our previous setting γ was the boundary of a simply connected region and all $n(\gamma, z_i) = 1$.

Evaluation of definite integrals

In this section, through a series of examples we demonstrate how to use residues formula to evaluate various definite integrals.

Example 9. Consider integral

$$\int_0^{2\pi} \frac{d\theta}{a + \cos\theta}$$

where a > 1 is a constant. If we let $z = e^{i\theta}$, then $dz = ie^{i\theta}d\theta$ and $\cos\theta = \frac{1}{2}(z + z^{-1})$ so the integral can be rewritten as

$$\int_{|z|=1} \frac{1}{a + \frac{1}{2}(z + z^{-1})} \frac{dz}{iz} = -2i \int_{|z|=1} \frac{dz}{z^2 + 2az + 1}.$$

The integrand $f(z) = 1/(z^2 + 2az + 1)$ has poles at $z_1 = -a - \sqrt{a^2 - 1}$ and $z_2 = -a + \sqrt{a^2 - 1}$. Clearly $|z_1| > 1$ and $|z_2| < 1$, hence function f(z) has only one pole at z_2 in the unit disk \mathbb{D} , and

$$\operatorname{res}_{z_2} \frac{1}{z^2 + 2az + 1} = \lim_{z \to z_2} (z - z_2) \frac{1}{(z - z_1)(z - z_2)} = \frac{1}{z_2 - z_1} = \frac{1}{2\sqrt{a^2 - 1}}$$

Therefore

$$\int_0^{2\pi} \frac{d\theta}{a + \cos \theta} = 2\pi \mathbf{i} \cdot (-2\mathbf{i}) \cdot \frac{1}{\sqrt{a^2 - 1}} = \frac{2\pi}{\sqrt{a^2 - 1}}.$$

A very common application of residue theorem occurs when we want to compute a definite integral of the form $\int_{-\infty}^{+\infty} f(x)dx$. In the case we first must choose a closed contour γ such that the integral $\int_{\gamma} f(z)dz$ can be estimated in terms of $\int_{-\infty}^{\infty} f(x)dx$.

Example 10.

$$\int_{-\infty}^{\infty} \frac{e^{ax}}{1 + e^x} dx, \quad 0 < a < 1.$$

Let $f(z) = \frac{e^{az}}{1+e^z}$. Consider the contour γ_R consisting of a rectangle with vertices at $-R, R, R + 2\pi i, -R + 2\pi i$.

Inside this contour f(z) has only one pole at $z_0 = \pi i$, and residue at this point is

$$\lim_{z \to \pi i} (z - \pi i) f(z) = e^{a\pi i} \lim_{z \to \pi i} \frac{z - \pi i}{e^z - e^{\pi i}}$$

The last limit is the inverse of

$$\lim_{z \to \pi i} \frac{e^z - e^{\pi i}}{z - \pi i} = (e^z) \Big|_{z = \pi i}' = e^{\pi i} = -1,$$
$$\operatorname{res}_{\pi i} f(z) = -e^{a\pi i}.$$

hence

Now we investigate the integrals of f(z) over the sides of rectangle. If we denote by I_R the integral over the lower side of the rectangle:

$$I_R = \int_{-R}^{R} f(z) dz,$$

then $I_R \to I$ as $R \to \infty$, where I is the integral of interest. The integral over the top side of the rectangle is then

$$-e^{2\pi i a}I_R$$

(with minus sign because of the opposite orientation). Finally integrals over the vertical sides can be bounded as

$$\int_0^{\pm R+2\pi i} f(z)dz \leqslant \int_0^{2\pi} \left| \frac{e^{a(R+it)}}{1+e^{R+it}} \right| dt \leqslant C e^{(a-1)R}.$$

Since *a* < 1 these integrals go to zero as $R \rightarrow \infty$. Collecting everything together we find:

$$I - Ie^{2\pi i a} = 2\pi i \operatorname{res}_{\pi i} f(z) = -2\pi i e^{a\pi i}.$$

and

$$I = -2\pi i \frac{e^{a\pi i}}{1 - e^{2a\pi i}} = \pi \frac{2i}{e^{a\pi i} - e^{-a\pi i}} = \frac{\pi}{\sin \pi a}.$$