Yury Ustinovskiy Complex Variables MATH-GA.2451-001 Fall 2019

Lecture 13

Calculus of residues

Residues

Assume that function f(z) is holomorphic in a region U —{zy} and has a singularity at z;. As we know, in under
this assumption, Cauchy’s theorem is not necessarily valid, in particular, for a circle C C U centered at z; the

integral
j f(z)dz
C

To capture the failure of Cauchy’s theorem quantitatively, we introduce a notion of residue of f(z) at z.

might be non-zero.

Definition 1. A residue of f(z) at z; is

res, f(z):= 2%_(1 Lf(z)dz

where C C U is a circle centered at z.

Lemma 2. The residue res, f (z) does not depend on the choice of circle C centered at z.

Proof. Let C, and Cy be two circles centered at z; of radii r and R respectively. We claim that

f f(z)dz = f(z)dz.
C, Cr

Indeed consider a keyhole-like contour y joining two circles of radii r and R.

14

By the general form of Cauchy’s theorem we have Iy f(2)dz = 0. Hence, letting the corridor width to go to zero,

we find
0= Lf(z)dz = LRf(z)dz— er(z)dz.

O
Remark 3. Clearly, if p = res,, dz, then
P
- dz=0 1
[ (-2 )z )
for any circle C centered at zy. Moreover, number p € C such that (1) hold is unique.
Exercise 1. Any closed curve y in an annulus {r < |z| < R} is homotopic to a curve C,(t) = r’e2mnt where

r’€(r,R), t€[0,1] and n = n(y,0).
In other words, C,(t) winds around 0 exactly n = n(y, 0) times with a constant angular speed.

Lemma 4. For a ball B.(zq) C U, function f(z)— z_sz has a single-valued antiderivative in B.(zy) — {zo}.

Proof. By the exercise, any curve y is homotopic to some curve C,, and by (1) we have

Lf(z)dz = L f(z)dz= an(z)dz =0.

Since Iy f(z)dz =0 for any curve y C B.(zg) — {zo}, function f(z) has an antiderivative in this region. O
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Residue at zj is hard to compute in general if function f(z) has an essential singularity at zy. The situation is
entirely different if z; is a pole. As we know, in this case, we can isolate the principle part of the pole:
a_y, a_q

MO Gy i

+¢(2) (2)

where ¢(z) is a holomorphic function in neighborhood of z,. Let C be a circle centered at z.

The contour integral IC for all terms of (2) vanishes except for the integral

J 81 47 = 2mia,. (3)
cCZ2720

Equation (3) gives a particularly simple formula for the residue of a function at its pole:
res;, f(2) = a_,
where a_; is the coefficient in front of (z—zy)~! term in the pole’s principle part.
Remark 5. If function f(z) has a simple pole at z (i.e., of order 1), then a_; can be recovered as
a_y = lim (z—-2zg)f (2).
z—2

In general, if the order of the pole is n > 1, one has the following formula

L Tim (2 2)" £ (2) ")

1= (n—1)! z>z

which follows immediately from (2).

Example 6. Function f(z) = ;"—Z has a pole of order n at z = 0. To compute its residue, we use the Taylor’s

expansion of e*:
n
Z Zn
“=)
n!
z=1

and find that the principle part of f(z) to be

¥
N

ilzt

Il
o

soresgf(z)=a_q =

(n-1)!

Residue theorem

Assume that curve ¥ bounds an open region U'. Consider function f(z) which is holomorphic in U—{zy,...z},
continuous in U —{zy,..., 2} and has isolated singularities at z;.

Theorem 7. For function f(z) as above we have

k

J f(z)dz = 2mi Zreszi f(2). (4)
V4

i=1

Proof. Enclose each z; in a small circle C; and connected all C;’s with y with non-intersecting arcs y;. Then
we can arrange C;’s (with opposite orientations), ¥ and y;’s in a keyhole-like contour I'. Contour I' bounds a
simply region U —U; ;.

Hence
J. f(z)dz=0
r
On other hand,
Lf(z)dz - Lf(z)dz - ,ZL flz)dz = Lf(z)dz —2mi ;reszif(z)
which concludes the proof. O

1 As always, we assume that curve y is positively oriented, which means that region U stays on the left as we follow y
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Identity (4) can be used in two directions: first is a powerful tool for the evaluation of definite integrals, as we
will see later. On other hand, it could be used to estimate residues and locate the poles of a given function.

One can also prove the following stronger version of Residue theorem, but we will not need it in our course.

Theorem 8. Let y C U be a contractible loop, such that z; € y. Then for any function f(z) as above we have
J f(@)dz=) n(y,z)res, f(2)
4 i
In our previous setting y was the boundary of a simply connected region and all n(y,z;) = 1.
Evaluation of definite integrals

In this section, through a series of examples we demonstrate how to use residues formula to evaluate various

definite integrals.
21 aoe
o a+cos0

where a > 1 is a constant. If we let z = ¢/, then dz = i¢9d0 and cos6 = %(z +z71) so the integral can be

rewritten as
1 dz . dz
i, - A 291
=1 a+5(z+2z71) 12 =1 2° +2az+1

Im

Example 9. Consider integral

23

The integrand f(z) = 1/(z®> + 2az + 1) has poles at z; = —a— Va2 -1 and z, = —a + Va2 — 1. Clearly |z;| > 1 and
|zo| <1, hence function f(z) has only one pole at z, in the unit disk ID, and

1 1 1
res, ——— = lim(z—z = =
2224 2az+1 Z—>Z2( 2)(z—zl)(z—zz) 22-21 2Va2-1
Therefore 5
T 4o . . 1 2
J- — =2mi - (-2i)- = T
o a+cos6 a2 -1 a2 -1

A very common application of residue theorem occurs when we want to compute a definite integral of the
form I_Jr;o f(x)dx. In the case we first must choose a closed contour y such that the integral ny(z)dz can be

estimated in terms of ff:o f(x)dx.

Example 10.

&9 eax
J xdx, O<a<l.
—eo 1te

Let f(z) = % Consider the contour yg consisting of a rectangle with vertices at —R, R, R+ 2mi, —R + 271i.

Im
27 VR

¢2o = TUi

Re
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Inside this contour f(z) has only one pole at zy = 7i, and residue at this point is

. . i . z—Ti
lim (z —7ti) f (z) = ™ lim .
z—Ti z—mi e? — ™
The last limit is the inverse of ]
o% — pTi ,
lim — = (ez) = em =-1,
zoni Z— T z=mi

hence

Now we investigate the integrals of f(z) over the sides of rectangle. If we denote by Iy the integral over the
lower side of the rectangle:

R
o= [ flas
-R
then Iz — I as R — oo, where I is the integral of interest. The integral over the top side of the rectangle is then
_eZRiaIR

(with minus sign because of the opposite orientation). Finally integrals over the vertical sides can be bounded

as .
+R+2711 271
f f(z)dz J
0 0

Since a < 1 these integrals go to zero as R — oco. Collecting everything together we find:

ea(R+i t)

m dt < Ce(“_l)R.
+e

N

I -1e%™% = 2pires,; f (z) = —2mie™™.

and .
aTfni H
. e 21 T
I=-2m - = TT—— - = — .
1 _ €2am eam _ e*llﬂl SN 7ta




