Lecture 14

Laurent series

Assume that function $f(z)$ is holomorphic and in a complement of a closed disk

$$
\mathbb{C}-\overline{B_{R}}(0)=\{|z|>R\}
$$

and has a removable singularity at ∞. In this case function $g(z):=f(1 / z)$ is holomorphic in a disk $B_{1 / R}(0)$, and therefore can be represented by a convergent Taylor's series:

$$
g(z):=f(1 / z)=\sum_{i=0}^{\infty} a_{i} z^{i}
$$

or equivalently

$$
\begin{equation*}
f(z)=\sum_{i=-\infty}^{i=0} a_{-i} z^{i} \tag{1}
\end{equation*}
$$

Expression of the form (1) is a particular example of a Laurent series. As we will now show similar representation can be found for any function holomorphic in an annulus $\{r<|z|<R\}$.

Theorem 1. Let $f(z)$ be a function holomorphic in $\{r<|z|<R\}$ then there exists a sequence of complex numbers $\left\{a_{i}\right\}_{i \in \mathbb{Z}}$ such that

- power series $\sum_{i=0}^{\infty} a_{i} z^{i}$ absolutely converges in $\{|z|<R\}$
- power series $\sum_{i=-\infty}^{0} a_{i} z^{i}$ absolutely converges in $\{|z|>r\}$
- the sum of the above power series represents $f(z)$:

$$
f(z)=\sum_{-\infty}^{+\infty} a_{i} z^{i}
$$

Remark 2. As a consequence of the above theorem, any function $f(z)$ holomorphic in an annulus can be represented as a sum of two function $f_{1}(z)$ and $f_{2}(z)$ holomorphic in $\{|z|<R\}$ and $\{|z|>r\}$ respectively.

Proof. We start the proof with a lemma
Lemma 3. Function $f(z)$ as above can be represented as

$$
f(z)=\frac{1}{2 \pi i} \int_{|\zeta|=R-\epsilon} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi i} \int_{|\zeta|=r+\epsilon} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

where $\epsilon>0$ is chosen in such a way that $r+\epsilon<|z|<R-\epsilon$.
Proof of the lemma. Consider a keyhole contour γ with radii $R-\epsilon$ and $r+\epsilon$.

Then, by general version of Cauchy's theorem (or by residue theorem)

$$
f(z)=\frac{1}{2 \pi \boldsymbol{i}} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi \boldsymbol{i}} \int_{|\zeta|=R-\epsilon} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi \boldsymbol{i}} \int_{|\zeta|=r+\epsilon} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

This proves the lemma.
Once the lemma is prove we can proceed exactly the same way as with the Taylor's series. Specifically,
Function $f_{1}(z)=\frac{1}{2 \pi i} \int_{|\zeta|=R-\epsilon} \frac{f(\zeta)}{\zeta-z} d \zeta$ is a holomorphic function in the disk $B_{R-\epsilon}(0)$ and can be represented by a convergent power series in this disk:

$$
f_{1}(z)=\sum_{i=0}^{\infty} a_{i} z^{i}
$$

Similarly for a function $f_{2}(z)=\frac{1}{2 \pi i} \int_{|\zeta|=r+\epsilon} \frac{f(\zeta)}{\zeta-z} d \zeta$, using the fact that $|\zeta / z|<1$ we can rewrite the defining identity as

$$
f_{2}(z)=\frac{1}{2 \pi \boldsymbol{i}} \int_{|\zeta|=r+\epsilon} \frac{f(\zeta)}{\zeta-z} d \zeta=-\frac{1}{2 \pi \boldsymbol{i}} \int_{|\zeta|=r+\epsilon} f(\zeta) \sum_{i=0}^{\infty} \frac{\zeta^{i}}{z^{i+1}} d \zeta=\sum_{i=0}^{\infty} \frac{b_{i}}{z^{i+1}}
$$

where $b_{i}=-\frac{1}{2 \pi i} \int_{|\zeta|=r+\epsilon} f(\zeta) \zeta^{i} d \zeta$. (As with Taylor's series, we can interchange integration and summation, since the power series is absolutely convergent.)
Remark 4. Special case of the above theorem is $r=0$. In this case, function $f(z)$ has an isolated singularity at $z=0$. This singularity if removable all $a_{-k}, k \in \mathbb{N}$ vanish, and is a pole $a_{-k}, k>C$ vanish.
The proof of the theorem, in particular, shows that

$$
\operatorname{res}_{0} f(z)=a_{-1}
$$

even for an essential singularity.

General form of the argument principle

We have proved that if $f(z)$ is holomorphic in an open disk $B_{R}\left(z_{0}\right)$ and $\gamma \subset B_{R}\left(z_{0}\right)$ is a closed curve inside the disk then

$$
\int \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i \sum n\left(\gamma, \zeta_{i}\right)
$$

where the sum is taken over all zeros of $f(z)$ in $B_{R}\left(z_{0}\right)$ and all zeros are counted with their multiplicities.
With the residue theorem we can prove an improved version of this argument principle.
Theorem 5. Assume that curve γ bounds a simply connected region U, and function $f(z)$ is meromorphic in a neighbourhood of U. If γ does not contain zeros or poles of U then

$$
\int \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i(\# z e r o s-\# \text { poles })
$$

where \#zeros and \#poles are the numbers of zeros and poles of $f(z)$ in U counted with multiplicities.
Proof. If function $f(z)$ has a pole of order k at z_{0}, then we can factor $f(z)$ as $f(z)=\left(z-z_{0}\right)^{-k} g(z), g\left(z_{0}\right) \neq 0$ and compute

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{-k}{z-z_{0}}+\frac{g^{\prime}(z)}{g(z)}
$$

i.e., f^{\prime} / f has a pole of order 1 with residue $-k$. Similarly, if z_{0} is a zero of order k, then f^{\prime} / f has a pole of order 1 with residue k.
Applying residue theorem to function f^{\prime} / f we conclude:

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i\left(\sum_{z_{0} \in\{\text { zeros }\}} \operatorname{ord}\left(z_{0}\right)-\sum_{z_{0} \in\{\text { poles }\}} \operatorname{ord}\left(z_{0}\right)\right)
$$

which is exactly the stated identity.

Harmonic functions

As we have already seen, the theory of holomorphic function is parallel to the theory of harmonic functions on \mathbb{R}^{2}. Today we will further investigate the links between these two topics. Throughout this topic we identify a point $(x, y) \in \mathbb{R}^{2}$ with the complex number $z=x+\boldsymbol{i} y \in \mathbb{C}$. In particular we will use interchangeably $u(x, y)$ and $u(z)$.

Definition 6. Twice differentiable function $u:(x, y) \in U \rightarrow \mathbb{R}$ is harmonic if

$$
\Delta u:=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad \forall(x, y) \in U
$$

From Cauchy-Riemann equations we know that if function $f(z), z=x+i y$ is holomorphic in U, then $u:=\operatorname{Re} f$ and $v:=\operatorname{Im} f$ are harmonic in U. Function $v:(x, y) \in U \rightarrow \mathbb{R}$ is called the conjugate harmonic function of $u(x, y)$.

Question. Given a harmonic function $u(x, y)$ in an open region U, does there exist a conjugate function $v(x, y)$?
Example 7. Function $u(x, y)=x^{2}-y^{2}$ is harmonic in \mathbb{R}^{2} with conjugate $v(x, y)=2 x y$. Indeed $f(z)=\left(x^{2}-y^{2}\right)+$ $\boldsymbol{i}(2 x y)=z^{2}$ is clearly holomorphic.

Example 8. Function $\log \left(x^{2}+y^{2}\right)$ is harmonic in $\mathbb{R}^{2}-\{(0,0)\}$ but does not have a conjugate function in this region. Of course, the reason is that there is no single-valued logarithm function $\log (z)$ in $\mathbb{C}^{2}-\{0\}$.

Proposition 9. If function $u(x, y)$ is harmonic in an open set U, then

$$
f(z):=\frac{\partial u}{\partial x}-\boldsymbol{i} \frac{\partial u}{\partial y}
$$

is holomorphic in U.
Proof. $\mathfrak{R e}(f)$ and $\operatorname{Im}(f)$ satisfy Cauchy-Riemann equations.
The following theorem provides a very general sufficient condition for the existence of a conjugate harmonic functions.

Theorem 10. Let $u(x, y)$ be a harmonic function in an open, connected, simply connected region U. Then $u(x, y)$ admits a conjugate function $v(x, y)$. Moreover, $v(x, y)$ is unique up to an additive constant.

Proof. Function

$$
f(z):=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}
$$

is holomorphic in a simply-connected U, therefore $f(z)$ admits a primitive $F(z)$:

$$
\begin{equation*}
F^{\prime}(z)=f(z) \tag{2}
\end{equation*}
$$

Claim: $\mathfrak{R e}(F)=u+$ const. Indeed equation (2) implies that

$$
\frac{\partial \mathfrak{R e} F}{\partial x}=\frac{\partial u}{\partial x}, \quad \frac{\partial \mathfrak{R e} F}{\partial y}=\frac{\partial u}{\partial y} .
$$

So function $(\mathfrak{R e} F-u)$ has vanishing partial derivatives in U. Since U is connected, $\mathfrak{R e} F$ and u must differ by a real constant.

Therefore $v(x, y):=(\operatorname{Im} F)(x+i y)$ is a conjugate harmonic function. If $v_{0}(x, y)$ is another conjugate function, then $\left(v-v_{0}\right)$ has zero partial derivatives and also must by a constant in a connected region.

Remark 11. The above theorem has many important corollaries. Being holomorphic, function $F(z)$ is infinitely differentiable and can be represented by a convergent power series in z, therefore $u(x, y)=(\mathfrak{R e} F)(x+i y)$ is infinitely \mathbb{R}-differentiable and can be represented by a convergent power series in x and y. Thus any harmonic function is analytic.

Now, once we have established a precise correspondence between holomorphic and harmonic functions, our next goal will be to translate results of complex analysis into statements about harmonic functions.

