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Lecture 14

Laurent series

Assume that function f(z) is holomorphic and in a complement of a closed disk
C - Bg(0) = {lz > R}

and has a removable singularity at co. In this case function g(z) := f(1/z) is holomorphic in a disk By,z(0), and
therefore can be represented by a convergent Taylor’s series:

e(z):=f(1/z)= Zuizi.

i=0
or equivalently
i=0
f@=) ai. (1)
i=—00

Expression of the form (1) is a particular example of a Laurent series. As we will now show similar representa-
tion can be found for any function holomorphic in an annulus {r <|z| < R}.

Theorem 1. Let f(z) be a function holomorphic in {r < |z| < R} then there exists a sequence of complex numbers
{a;}icz such that

* power series ) ;o a;z' absolutely converges in {|z| < R}

* power series Z?}m a;z' absolutely converges in {|z| > r}

* the sum of the above power series represents f(z):

+00

flz)= Za,-zi.

Remark 2. As a consequence of the above theorem, any function f(z) holomorphic in an annulus can be
represented as a sum of two function f;(z) and f,(z) holomorphic in {|z] < R} and {|z| > r} respectively.
Proof. We start the proof with a lemma

Lemma 3. Function f(z) as above can be represented as

fla)= S e L 110 ¢

27 |C|=R—e C -2 27 |C|=r+e C 4

where € > 0 is chosen in such a way that v+ € <|z| <R —e.

Proof of the lemma. Consider a keyhole contour y with radii R—e and r + €.

R-¢ Y
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Then, by general version of Cauchy’s theorem (or by residue theorem)

([0 L[ @, 1 [ S,
flz)= q = L ¢ .L c

2mi ,C-z 27t Jigjep-e C—2 27 Jitjzpse C— 2

This proves the lemma. O

Once the lemma is prove we can proceed exactly the same way as with the Taylor’s series. Specifically,

Function f;(z) dC is a holomorphic function in the disk Bz_.(0) and can be represented by a

filz) = iaizf.

i=0

= 2m J- C| R-e€ C -z
convergent power series in this disk:

Similarly for a function f,(z) = 2m le e C de, using the fact that |C/z] < 1 we can rewrite the defining
identity as

1 f(©) 1 N
Z)=——> dC iy C
f2( ) 27t |C|=r+e C -2 27'[1 |C|:r+€f( ZlJr1 ZO’
where b; = ‘szLn:Hef(C)CidC- (As with Taylor’s series, we can interchange integration and summation,
since the power series is absolutely convergent.) O

Remark 4. Special case of the above theorem is r = 0. In this case, function f(z) has an isolated singularity at
z = 0. This singularity if removable all a_t, k € N vanish, and is a pole a_g, k > C vanish.

The proof of the theorem, in particular, shows that

resof(z) = a4

even for an essential singularity.

General form of the argument principle

We have proved that if f(z) is holomorphic in an open disk Bg(zy) and y C Bg(zp) is a closed curve inside the

disk then 2
z .
f ) dz =27 Zn(y, Ci),

where the sum is taken over all zeros of f(z) in Bg(zy) and all zeros are counted with their multiplicities.

With the residue theorem we can prove an improved version of this argument principle.

Theorem 5. Assume that curve y bounds a simply connected region U, and function f(z) is meromorphic in a
neighbourhood of U. If y does not contain zeros or poles of U then

f'(2)
f(2)

where #zeros and #poles are the numbers of zeros and poles of f(z) in U counted with multiplicities.

dz = 2mi(#zeros — #poles),

Proof. If function f(z) has a pole of order k at z;, then we can factor f(z) as f(z) = (z—zy)*

compute
flz) _ -k §'(2)
= +
flz)  z-z g(2)
i.e., f’/f has a pole of order 1 with residue —k. Similarly, if z; is a zero of order k, then f’/f has a pole of order
1 with residue k.

8(2), 8(2p) # 0 and

’

Applying residue theorem to function f’/f we conclude:

J];/((j))dz:Zni[ Y ord(zo)- Y ord(z)
V4

zo€{zeros} zp€{poles}

which is exactly the stated identity. O
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Harmonic functions

As we have already seen, the theory of holomorphic function is parallel to the theory of harmonic functions on
R%. Today we will further investigate the links between these two topics. Throughout this topic we identify a
point (x,v) € R? with the complex number z = x +iy € C. In particular we will use interchangeably u(x,y) and
u(z).

Definition 6. Twice differentiable function u: (x,y) € U — IR is harmonic if

2 2
Au::a—u ou

axz + 8_}12 = 0, V(x,y) e U.

From Cauchy-Riemann equations we know that if function f(z), z= x +iy is holomorphic in U, then u := Re f
and v := Imf are harmonic in U. Function v: (x,9) € U — R is called the conjugate harmonic function of

u(x,v).
Question. Given a harmonic function u(x,y) in an open region U, does there exist a conjugate function v(x,y)?

Example 7. Function u(x,y) = x> —y? is harmonic in IR? with conjugate v(x,y) = 2xy. Indeed f(z) = (x*> —p?) +
i(2xy) = z? is clearly holomorphic.

Example 8. Function log(x? + v?) is harmonic in IR? - {(0,0)} but does not have a conjugate function in this
region. Of course, the reason is that there is no single-valued logarithm function log(z) in €2 —{0}.

Proposition 9. If function u(x,v) is harmonic in an open set U, then

Ju . du
f(Z) = x —la—y
is holomorphic in U.
Proof. Re(f) and Im(f) satisfy Cauchy-Riemann equations. O

The following theorem provides a very general sufficient condition for the existence of a conjugate harmonic
functions.

Theorem 10. Let u(x,y) be a harmonic function in an open, connected, simply connected region U. Then u(x,p)
admits a conjugate function v(x,v). Moreover, v(x, ) is unique up to an additive constant.

Proof. Function

Ju . du
flz):= ﬁ_la_y

is holomorphic in a simply-connected U, therefore f(z) admits a primitive F(z):

F'(z) = f(2). (2)
Claim: Re(F) = u + const. Indeed equation (2) implies that

dReF _du  JReF _ du
ox dx’ dy Iy’

So function (ReF — u) has vanishing partial derivatives in U. Since U is connected, ReF and 1 must differ by a
real constant.

Therefore v(x,y) := (ImF)(x +1iy) is a conjugate harmonic function. If vy(x,y) is another conjugate function,
then (v —vg) has zero partial derivatives and also must by a constant in a connected region. O

Remark 11. The above theorem has many important corollaries. Being holomorphic, function F(z) is infinitely
differentiable and can be represented by a convergent power series in z, therefore u(x,y) = (ReF)(x +iyp) is
infinitely IR-differentiable and can be represented by a convergent power series in x and y. Thus any harmonic
function is analytic.

Now, once we have established a precise correspondence between holomorphic and harmonic functions, our
next goal will be to translate results of complex analysis into statements about harmonic functions.



