Lecture 15

Mean-value theorem

Theorem 1 (Mean-value theorem). Suppose function $u: \overline{B_R(z_0)} \to \mathbb{R}$ is harmonic in an open disk $B_R(z_0)$ and continuous in its closure $\overline{B_R(z_0)}$. Then

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + Re^{i\theta}) d\theta.$$
 (1)

Proof. Since function u is harmonic in a simply connected region $B_R(z_0)$, we can find a holomorphic function $f: B_R(z_0) \to \mathbb{C}$ such that $\Re e(f) = u$.

By Cauchy's theorem, for any $r \in (0, R)$ we have

$$f(z_0) = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(\zeta)}{\zeta - z_0} d\zeta.$$
(2)

Now, choose parametrization $\gamma(\theta)$ of $\{|z - z_0| = r\}$:

$$\gamma(\theta) = z_0 + re^{i\theta}, \quad \theta \in [0, 2\pi]$$

and rewrite (2) substituting $\zeta = z_0 + re^{i\theta}$ and $d\zeta = ire^{i\theta}d\theta$ (equivalently $d\theta = \frac{d\zeta}{i(\zeta - z_0)}$):

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Considering the real part of the above identity and letting $r \rightarrow R$ we prove the theorem.

Remark 2. In other words, the value of a harmonic function $u(z): U \to \mathbb{R}$, at any point in $z_0 \in U$, equals the *average* value of u(z) on (any) circle centered at z_0 .

This reformulation of the mean-value theorem agrees with the physical interpretation of harmonic functions, as steady heat distributions.

Corollary 3 (Maximum principle). If harmonic function $u: U \to \mathbb{R}$ achieves its maximum(minimum) at an interior point $z_0 \in U$, then u is locally constant.

Proof. Assume u(z) achieves local maximum at $z_0 \in U$. Since $z_0 \in U$ is an interior point, we can find a small disk $\overline{B_R}(z_0) \subset U$. Applying the mean-value theorem to u(z) and $B_r(z_0) \subset B_R(z_0)$, we find

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta.$$

Since for all $\theta \in [0, 2\pi]$ we must have $u(z_0 + re^{i\theta}) \leq u(z_0)$, the above identity can only hold if

$$u(z_0 + re^{i\theta}) = u(z_0)$$
 for all θ .

Since $r \in (0, R)$ is arbitrary, we conclude that u(z) is locally constant.

Corollary 4. If u_1 and u_2 are two continuous functions on a closed bounded set \overline{U} which are harmonic in the interior U of \overline{U} and such that $u_1 = u_2$ on the boundary of \overline{U} , then $u_1 = u_2$ in U.

In other words, harmonic functions as above are uniquely determined by their values on the boundary.

Poisson formula in a disk

Suppose function $u: \overline{\mathbb{D}} \to \mathbb{R}$ is harmonic in an open unit disk \mathbb{D} and continuous in its closure $\overline{\mathbb{D}}$. Formula (1) allows to recover the value u(0) from the values of u on $\partial \mathbb{D}$. On the other hand, Corollary 4 implies that values u(w) at other points $w \in \mathbb{D}$ must be also uniquely determined by the values of u on $\partial \mathbb{D}$. The following theorem gives a precise formula for u(w) at any fixed $w \in \mathbb{D}$ in terms of $u(z), z \in \partial \mathbb{D}$.

Theorem 5 (Poisson formula in \mathbb{D}). Let $u: \overline{\mathbb{D}} \to \mathbb{R}$ be as above. Then for $w \in \mathbb{D}$ we have

$$u(w) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |w|^2}{|e^{i\theta} - w|^2} u(e^{i\theta}) d\theta.$$
(3)

Remark 6. If w = 0, the above formula recovers mean-value theorem (1) in \mathbb{D} .

Proof. The idea is to pre-compose function u(z) with a holomorphic mapping of the disk

$$f: \overline{\mathbb{D}} \to \overline{\mathbb{D}}, \qquad f: \zeta \mapsto \frac{\zeta + w}{1 + \overline{w}\zeta}$$

which sends $0 \in \mathbb{D}$ to w.

Then, function $U(\zeta) := u(f(\zeta))$ is harmonic as a composition of a holomorphic mapping and harmonic function¹. In particular, $U(\zeta)$ satisfies mean value theorem:

$$u(w) = U(0) = \frac{1}{2\pi} \int_0^{2\pi} U(e^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} u\left(\frac{e^{i\theta} + w}{1 + \overline{w}e^{i\theta}}\right) d\theta$$
(4)

Since $f: \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ maps bijectively the boundary of disk on itself, we know that

$$\frac{e^{i\theta} + w}{1 + \overline{w}e^{i\theta}} = e^{i\alpha}$$

or equivalently

$$e^{i\theta} = \frac{w - e^{i\alpha}}{\overline{w}e^{i\alpha} - 1}$$

for a function $\alpha: \theta \in [0, 2\pi] \rightarrow [0, 2\pi]$. Taking differential of both sides of the above identity, we find:

$$d\theta = -\frac{e^{i\alpha}d\alpha}{w - e^{i\alpha}} - \frac{\overline{w}e^{i\alpha}d\alpha}{\overline{w}e^{i\alpha} - 1} = d\alpha \left(\frac{e^{i\alpha}}{e^{i\alpha} - w} + \frac{\overline{w}}{e^{-i\alpha} - \overline{w}}\right) = \frac{1 - |w|^2}{|e^{i\alpha} - w|^2} d\alpha.$$

Substituting $d\theta$ back into (4), we find

$$u(w) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |w|^2}{|e^{i\alpha} - w|^2} u(e^{i\alpha}) d\alpha$$

as required.

Remark 7. Function

$$K_w(z) := \frac{1 - |w|^2}{|z - w|^2} = \operatorname{Re}\left(\frac{z + w}{z - w}\right), \quad |z| = 1$$

is called *Poisson kernel* in the unit disk.

Of course, there is an analogue of Poisson formula in any disk $B_R(z_0)$.

With the second expression for the Poisson kernel, we can rewrite Poisson formula (3) as

$$u(w) = \operatorname{Re}\left(\frac{1}{2\pi i} \int_{|z|=1} \frac{z+w}{z-w} \frac{u(z)}{z} dz\right).$$

The function in parenthesis is a holomorphic function in $w \in \mathbb{D}$. In particular, its imaginary part provides a conjugate harmonic function for u. Moreover, given continuous $u: \partial \mathbb{D} \to \mathbb{R}$, we can define u(w) for $w \in \mathbb{D}$ by the above integral formula and the result will be a harmonic function.

Question. Given the above observation, it is natural to ask if such u(w) defined by the Poisson formula (3) in the interior of \mathbb{D} is continuous in $\overline{\mathbb{D}}$. In other words, is it true that for $z \in \partial \mathbb{D}$ we have $\lim_{w \to z} u(w) = u(z)$?

This question will be answered in the next section.

¹This is Problem 2 from the homework.

Schwarz's theorem

Theorem 8. Given a piecewise continuous function $u(e^{i\theta}), \theta \in [0, 2\pi]$, the Poisson integral

$$P_u(w) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1-|w|^2}{|e^{i\theta}-w|^2} u(e^{i\theta}) d\theta$$

is harmonic for |w| < 1 and $\lim_{z \to e^{i\theta_0}} P_u(z) = u(e^{i\theta_0})$ if u is continuous at $e^{i\theta_0}$.

Proof. We already know that $P_u(w)$ is harmonic in \mathbb{D} as a real part of a holomorphic function. Let us list properties of P_u .

- 1. $P_{u_1+u_2} = P_{u_1} + P_{u_2};$
- 2. $P_{cu} = cP_u$ for a constant $c \in \mathbb{R}$;
- 3. $P_{u_1} \ge P_{u_2}$ on \mathbb{D} as long as $u_1 \ge u_2$ on $\partial \mathbb{D}$;
- 4. $P_1 = 1$.

Properties 1 and 2 are obvious; property 3 follows fomr the positivity of Poisson kernel: $K_w(z) > 0$; property 4 follows from the Poisson formula applied to a harmonic function u(z) = 1. Note that 2. and 4. imply $P_c = c$ for any constant $c \in \mathbb{R}$.

Now let $e^{i\theta_0}$ be a point of continuity of u. Considering $u - u(e^{i\theta_0})$ instead of u we may assume that $u(e^{i\theta_0}) = 0$. Since u is continuous at $e^{i\theta_0}$, for any $\epsilon > 0$ we can find a small open arc $C_1 \subset \partial \mathbb{D}$ containing $e^{i\theta_0}$ such that $|u(e^{i\theta})| < \epsilon$ for $\theta \in C_1$. Let C_2 be the complementary arc.

We can split $u(z) = u_1(z) + u_2(z)$, where $u_1(z) := \chi(z \in C_1) \cdot u(z)$ is supported on C_1 and $u_2(z) := \chi(z \in C_2) \cdot u(z)$ is supported on C_2 .

We have $|u_1| < \epsilon$ on $\partial \mathbb{D}$, hence by properties of P_u , we conclude $|P_{u_1}| < \epsilon$ in \mathbb{D} .

On the other hand P_{u_2} can be expressed as

$$P_{u_2}(w) = \frac{1}{2\pi} \int_{C_2} \frac{1 - |w|^2}{|e^{i\theta} - w|^2} u(e^{i\theta}) d\theta$$

This integral yields a well-defined harmonic function for all $w \notin C_2$. In particular, P_{u_2} is continuous on C_1 . Moreover, clearly $P_{u_2}(w) = 0$ for $w \in C_1$, since the Poisson kernel vanishes on C_2 .

Therefore, in some δ -neighbourhood of $e^{i\theta_0}$ we have $|P_{u_2}| < \epsilon$. We conclude that for $w \in B_{\delta}(e^{i\theta_0}) \cap \mathbb{D}$

 $|P_{u}(w)| = |P_{u_{1}}(w) + P_{u_{2}}(w)| \le |P_{u_{1}}(w)| + |P_{u_{2}}(w)| \le 2\epsilon.$

Since ϵ is arbitrary, $P_{\mu}(w) \rightarrow 0$ as $w \in e^{i\theta_0}$.

Schwarz's theorem ensures that given a continuous function on a boundary of a unit circle $\partial \mathbb{D}$, we can extend it to a continuous function, harmonic in \mathbb{D} .

Reflection principle

There is a common situation when a given harmonic (holomorphic) function u(z) (f(z)) in a domain U can be explicitly extended to a harmonic (holomorphic) function in a larger domain.

Throughout this section, *U* is an open connected set which is symmetric with respect to *x*-axis, and let $U_+ := U \cap {\text{Im}(z) > 0}$, $U_- := U \cap {\text{Im}(z) < 0}$ and let be the arc $\nu := U \cap {\text{Im}(z) = 0}$.

Theorem 9. If function f(z) is holomorphic in U_+ , continuous in $U_+ \cup v$ and real on v, then $\overline{f(\overline{z})}$ is holomorphic in U_- and

$$F(z) := \begin{cases} f(z), \ z \in U_+ \cup \nu \\ \overline{f(\overline{z})}, \ z \in U_- \cup \nu \end{cases}$$

is holomorphic in U.

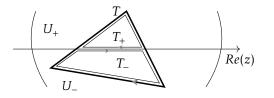
²By definition, characteristic function of a set *S* is $\chi(z \in S)$ which equals 1 if $z \in S$ and is 0 otherwise.

Proof. The assertion that $\overline{f(\overline{z})}$ is holomorphic in U_{-} is an easy consequence of Cauchy-Riemann equation.

Now, the assumptions on f(z) imply that F(z) is holomorphic in $U_+ \cup U_-$ and continuous in U. To prove that f(z) is holomorphic in the entire U, it is enough to prove that

$$\int_T F(z)dz = 0$$

for any triangle *T* contained in *U* with its interior (this is the statement of Morera's theorem).



If *T* is contained entirely in U_+ and U_- , the integral is zero since F(z) is holomorphic in $U_+ \cup U_-$. Now let *T* be a triangle intersecting ν . Then we can split it into to contours T_+ and T_- (see the picture), and the integral over both of them is zero.