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Lecture 15

Mean-value theorem

Theorem 1 (Mean-value theorem). Suppose function u : BR(z0) → R is harmonic in an open disk BR(z0) and
continuous in its closure BR(z0). Then

u(z0) =
1

2π

∫ 2π

0
u(z0 +Reiiiθ)dθ. (1)

Proof. Since function u is harmonic in a simply connected region BR(z0), we can find a holomorphic function
f : BR(z0)→C such that<(f ) = u.

By Cauchy’s theorem, for any r ∈ (0,R) we have

f (z0) =
1

2πiii

∫
|z−z0 |=r

f (ζ)
ζ − z0

dζ. (2)

Now, choose parametrization γ(θ) of {|z − z0| = r}:

γ(θ) = z0 + reiθ , θ ∈ [0,2π]

and rewrite (2) substituting ζ = z0 + reiθ and dζ = iiireiiiθdθ (equivalently dθ = dζ
iii(ζ−z0) ):

f (z0) =
1

2π

∫ 2π

0
f (z0 + reiθ)dθ.

Considering the real part of the above identity and letting r→ R we prove the theorem.

Remark 2. In other words, the value of a harmonic function u(z) : U → R, at any point in z0 ∈ U , equals the
average value of u(z) on (any) circle centered at z0.

This reformulation of the mean-value theorem agrees with the physical interpretation of harmonic functions,
as steady heat distributions.

Corollary 3 (Maximum principle). If harmonic function u : U →R achieves its maximum(minimum) at an interior
point z0 ∈U , then u is locally constant.

Proof. Assume u(z) achieves local maximum at z0 ∈ U . Since z0 ∈ U is an interior point, we can find a small
disk BR(z0) ⊂U . Applying the mean-value theorem to u(z) and Br (z0) ⊂ BR(z0), we find

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiiiθ)dθ.

Since for all θ ∈ [0,2π] we must have u(z0 + reiiiθ) 6 u(z0), the above identity can only hold if

u(z0 + reiiiθ) = u(z0) for all θ.

Since r ∈ (0,R) is arbitrary, we conclude that u(z) is locally constant.

Corollary 4. If u1 and u2 are two continuous functions on a closed bounded setU which are harmonic in the interior
U of U and such that u1 = u2 on the boundary of U , then u1 = u2 in U .

In other words, harmonic functions as above are uniquely determined by their values on the boundary.

Poisson formula in a disk

Suppose function u : D→ R is harmonic in an open unit disk D and continuous in its closure D. Formula (1)
allows to recover the value u(0) from the values of u on ∂D. On the other hand, Corollary 4 implies that values
u(w) at other points w ∈D must be also uniquely determined by the values of u on ∂D. The following theorem
gives a precise formula for u(w) at any fixed w ∈D in terms of u(z), z ∈ ∂D.
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Theorem 5 (Poisson formula in D). Let u : D→R be as above. Then for w ∈D we have

u(w) =
1

2π

∫ 2π

0

1− |w|2

|eiiiθ −w|2
u(eiiiθ)dθ. (3)

Remark 6. If w = 0, the above formula recovers mean-value theorem (1) in D.

Proof. The idea is to pre-compose function u(z) with a holomorphic mapping of the disk

f : D→D, f : ζ 7→ ζ +w
1 +wζ

which sends 0 ∈D to w.

Then, function U (ζ) := u(f (ζ)) is harmonic as a composition of a holomorphic mapping and harmonic func-
tion1. In particular, U (ζ) satisfies mean value theorem:

u(w) =U (0) =
1

2π

∫ 2π

0
U (eiiiθ)dθ =

1
2π

∫ 2π

0
u

(
eiiiθ +w

1 +weiiiθ

)
dθ (4)

Since f : D→D maps bijectively the boundary of disk on itself, we know that

eiiiθ +w
1 +weiiiθ

= eiiiα ,

or equivalently

eiiiθ =
w − eiiiα

weiiiα − 1
.

for a function α : θ ∈ [0,2π]→ [0,2π]. Taking differential of both sides of the above identity, we find:

dθ = − e
iiiαdα

w − eiiiα
− we

iiiαdα

weiα − 1
= dα

(
eiiiα

eiiiα −w
+

w

e−iiiα −w

)
=

1− |w|2

|eiiiα −w|2
dα.

Substituting dθ back into (4), we find

u(w) =
1

2π

∫ 2π

0

1− |w|2

|eiiiα −w|2
u(eiiiα)dα.

as required.

Remark 7. Function

Kw(z) :=
1− |w|2

|z −w|2
=<

(z+w
z −w

)
, |z| = 1

is called Poisson kernel in the unit disk.

Of course, there is an analogue of Poisson formula in any disk BR(z0).

With the second expression for the Poisson kernel, we can rewrite Poisson formula (3) as

u(w) =<
(

1
2πiii

∫
|z|=1

z+w
z −w

u(z)
z
dz

)
.

The function in parenthesis is a holomorphic function in w ∈ D. In particular, its imaginary part provides a
conjugate harmonic function for u. Moreover, given continuous u : ∂D→ R, we can define u(w) for w ∈D by
the above integral formula and the result will be a harmonic function.

Question. Given the above observation, it is natural to ask if such u(w) defined by the Poisson formula (3) in the
interior of D is continuous in D. In other words, is it true that for z ∈ ∂D we have limw→z u(w) = u(z)?

This question will be answered in the next section.

1This is Problem 2 from the homework.
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Schwarz’s theorem

Theorem 8. Given a piecewise continuous function u(eiiiθ), θ ∈ [0,2π], the Poisson integral

Pu(w) =
1

2π

∫ 2π

0

1− |w|2

|eiiiθ −w|2
u(eiiiθ)dθ

is harmonic for |w| < 1 and limz→eiiiθ0 Pu(z) = u(eiiiθ0 ) if u is continuous at eiiiθ0 .

Proof. We already know that Pu(w) is harmonic in D as a real part of a holomorphic function.

Let us list properties of Pu .

1. Pu1+u2
= Pu1

+ Pu2
;

2. Pcu = cPu for a constant c ∈R;

3. Pu1
> Pu2

on D as long as u1 > u2 on ∂D;

4. P1 = 1.

Properties 1 and 2 are obvious; property 3 follows fomr the positivity of Poisson kernel: Kw(z) > 0; property 4
follows from the Poisson formula applied to a harmonic function u(z) = 1. Note that 2. and 4. imply Pc = c for
any constant c ∈R.

Now let eiiiθ0 be a point of continuity of u. Considering u −u(eiiiθ0 ) instead of u we may assume that u(eiiiθ0 ) = 0.

Since u is continuous at eiiiθ0 , for any ε > 0 we can find a small open arc C1 ⊂ ∂D containing eiiiθ0 such that
|u(eiiiθ)| < ε for θ ∈ C1. Let C2 be the complementary arc.

We can split u(z) = u1(z) + u2(z), where2 u1(z) := χ(z ∈ C1) · u(z) is supported on C1 and u2(z) := χ(z ∈ C2) · u(z)
is supported on C2.

We have |u1| < ε on ∂D, hence by properties of Pu , we conclude |Pu1
| < ε in D.

On the other hand Pu2
can be expressed as

Pu2
(w) =

1
2π

∫
C2

1− |w|2

|eiiiθ −w|2
u(eiiiθ)dθ

This integral yields a well-defined harmonic function for all w < C2. In particular, Pu2
is continuous on C1.

Moreover, clearly Pu2
(w) = 0 for w ∈ C1, since the Poisson kernel vanishes on C2.

Therefore, in some δ-neighbourhood of eiiiθ0 we have |Pu2
| < ε. We conclude that for w ∈ Bδ(eiiiθ0 )∩D

|Pu(w)| = |Pu1
(w) + Pu2

(w)| 6 |Pu1
(w)|+ |Pu2

(w)| 6 2ε.

Since ε is arbitrary, Pu(w)→ 0 as w ∈ eiiiθ0 .

Schwarz’s theorem ensures that given a continuous function on a boundary of a unit circle ∂D, we can extend
it to a continuous function, harmonic in D.

Reflection principle

There is a common situation when a given harmonic (holomorphic) function u(z) (f (z)) in a domain U can be
explicitly extended to a harmonic (holomorphic) function in a larger domain.

Throughout this section, U is an open connected set which is symmetric with respect to x-axis, and let U+ :=
U ∩ {=(z) > 0}, U− :=U ∩ {=(z) < 0} and let be the arc ν :=U ∩ {=(z) = 0}.

Theorem 9. If function f (z) is holomorphic in U+, continuous in U+ ∪ ν and real on ν, then f (z) is holomorphic in
U− and

F(z) :=

f (z), z ∈U+ ∪ ν
f (z), z ∈U− ∪ ν

is holomorphic in U .
2By definition, characteristic function of a set S is χ(z ∈ S) which equals 1 if z ∈ S and is 0 otherwise.
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Proof. The assertion that f (z) is holomorphic in U− is an easy consequence of Cauchy-Riemann equation.

Now, the assumptions on f (z) imply that F(z) is holomorphic in U+ ∪U− and continuous in U . To prove that
f (z) is holomorphic in the entire U , it is enough to prove that∫

T
F(z)dz = 0

for any triangle T contained in U with its interior (this is the statement of Morera’s theorem).

Re(z)

T

T+

T−

U+

U−

If T is contained entirely in U+ and U−, the integral is zero since F(z) is holomorphic in U+ ∪U−. Now let T
be a triangle intersecting ν. Then we can split it into to contours T+ and T− (see the picture), and the integral
over both of them is zero.


