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Lecture 16

Let us start today’s lecture by recalling an important result allowing to construct holomorphic functions as
limits of holomorphic functions.

Theorem 1 (Weierstrass’ theorem). Consider a sequence {f,},cn, where f,, is a function holomorphic in an open set
U,,. Assume that Uy C Uy C Uz C... and let U := UU,,.

If (fu)new converges to a limit function f: U — C uniformly on every compact subset' of U, then
* f(z) is holomorphic in U

* f'(z) =lim,_, f,(2) and convergence is uniform on every compact subset of U.

Proof. First observe that for every compact K C U union UU,, is an open cover of K, hence there exists N > 0
such that K c Uy C U.

Take any z, € U and fix closed disk Bg(zy). Take N € N such that Bg(zq) C U, for n > N. In Bg(z,), sequence
{f:}nsN uniformly converges to a function f(z), hence for every loop ¥ C Br(zy) we have

Lfncz)dz - Lf(z)dz

Taking z — oo and using the fact that f, being holomorphic implies fy fu(z)dz = 0 (Cauchy’s theorem), we

Lf(z)dz: 0

and f(z) is holomorphic in Bg(zy) by Morera’s theorem. Since Br(zg) C U is arbitrary, f(z) is holomorphic in
the entire U. This proves the first assertion.

< Length(y) - sup|f,(z) - f(z)|

zey

conclude that

To get the uniform convergence of derivatives, we use Cauchy’s formula for derivatives in Bp(zg):

, 1 f(C)
n ) dC
Itz J|-Z—ZU|R

" omi (C-2)2

therefore for z € Bg/,(2p)

1

1
< —-——-Length(y)- sup |f(z)-fu(2)l
21t 4R? 2€BR(2o) !

f'(2) - fu(2)l =

1 F(0 - £,(©)
27 >[|z—z0|R (C- 2)2 ac

As n — oo the right hand side converges to 0 in Bg/;(zg). It remains to notice that any compact K € U can be
covered by a finite collection of disks Bg/,(zg) such that Bg(zg) C U. O

Example 2. Let ¥ a2 be an infinite power series with radius of convergence R. Then sequence of polyno-

mials
n

ful2) =) a2t

0

uniformly converges in the disk Bg(0) and the limiting functions is holomorphic in this disk.

Infinite series and products

Partial fraction representation

Assume that function f(z) is meromorphic in a connected open set U and has poles {Ci}. To every pole (i of
order nj we associate its principle part

aj
SRS Z (z— i)'

i=1

1 That is for every compact K c U and every e > 0 there exists N = N(K, €) € N such that |f(z) - f,,(z)| < € for each # > N and any z € K.
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If f(z) has finitely many poles in U we may write f(z) as

where g(z) is holomorphic in U.

If f(z) has infinitely many poles in U, the above representation (1) includes infinite sum which may not be
convergent. The point of Mittag-Leffler theorem is that, under extra assumptions, it is possible to modify the
expression on the right-hand-side of (1) turning it into a convergent infinite sum.

Theorem 3 (Mittag-Leffler theorem). Let {C;} C C be a sequence such that limy_, ., C; = oo and let {D(z)}

ai
RE=) gy

i=1

be an arbitrary collection of ‘principle parts’ of poles at Cy. Then

* There exists a meromorphic function f(z) in C with poles just at {C} and prescribed principle parts Dy (z).

* Any such f(z) can be written as
f@)=g()+ ) (B(2)-4x(2)
k

where g(z) is holomorphic in entire C and {qy(z)} are polynomials.

Proof. Without loss of generality we assume that 0 ¢ {C;}. The idea is that instead of summing P;(z) which
might produce a divergent infinite series, we can sum P (z) — gx(z), where gi(z) is the Taylor polynomial ap-
proximating Py(z) so that P(z) — g (z) is the remainder term in the Taylor’s series. By a smart choice of degrees
of {qx(z)} we will guarantee that {P(z) — qx(z)} will form an absolutely convergent series in C.

Not let us fill in the details. Let g (z) be the polynomial part of the Taylor’s formula for P(z) at zg = 0 of degree
N, where N;. is a number to be chosen later:

Pe(2) = gk (2) + Pp N, ()27

We now that the remained 1y y, has an integral representation

1 P (C)
—dC.
Pen (2) L

- 2_7U CNkH(C—Z)

If we choose C = {|z| = |C—2"|}, the above representation will hold in the disk B, »(0). Moreover, for |z| < |Cx|/4 we
have the following bound:

|1/’k,Nk(Z)| < % 27T£Ck| ]\/II\;c 1117
(ICkl/2)Nert =
Length(y)

where M, = SUP|1=ic,)/2 P(z).

Hence Nl
2|z|) e
|kl

Let us choose N large enough so that My < 2Nk Then, as long as |z| < |Ck|/4, we have

[Pk (2) - qx(2)] < 2M (

|Pi(2) - ()] < 275

Now, consider any disk Bg(0). Then
Y (B(2) - qx(2))

|Ckl/4>R

uniformly converges in Bg(0) to a holomorphic function in Bg(0), and

Y B@-q2) = ) (BE)-a@)+ ) (Blz)=4x(2)

k [Ckl/4<R |Ckl/4>R
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is well-defined meromorphic function in Bg(0) with principle parts P(z) at Cx. Since R is arbitrary, h(z) :=
Y 1 (P(2) — qk(2)) is a well-defined meromorphic function in C with prescribed principle parts of poles at (.
This proves the first statement.

To prove the second statement, consider any meromorphic function f(z) with prescribed poles and principle
parts. Then g(z) := f(z) — h(z) is holomorphic in the entire C. O

Ccos Tz

Example 4. Consider function f(z) = wcotnz = g =.

This function has poles at all points C,, = n,n € Z with

1
principle part P,(z) = o Naively, we would write

1
z+n

ncotwz “ =" g(z)+ Z

nezZ
Unfortunately, the above infinite sum needs to be properly understood. One way to interpret it is to write it as

h(z)::%+ Z (zin_%)'

neZ,n=0

Then the new infinite sum above converges uniformly in every closed disk Bg(0), since

1 1

2R

Z+n n

for n large enough.

Therefore both 7 cot 7tz and h(z) represent meromorphic functions in C with the same set of poles and principle
parts at these poles. Hence
g(z) := mcotmz — h(z)

is an entire holomorphic function.

We claim that g(z) = 0. To prove it, we will show that g(z) is bounded and must be a constant by Liouville
theorem. Since both g(z) and 7 cot 7tz are odd, this constant must be 0.

First, note that both 7 cot 7tz and h(z) are periodic as z — z+ 1. Hence it is enough to prove boundedness in the
strip |Re(z)| < 1/2. For Im(z) > 1, we have

ATz 4 piTz . 72Ty 4 pm2mix

cotmz =i— — =1 -
einz _ p-imz e2mY _ o—2mix

which is clearly bounded.

It remains to prove that h(z) = 1 + Y ./ o (# - %) is bounded in the same region. Indeed, we can rewrite

1 1\ «— 2
Z (z+n_;):Zfzz—Zn2

neZ,n=0 n=
so that
2z = 0 e
ﬁgcz 2? 2<CJ %d.x:c?
n:lz -n n:ly +n 0o y°tx

So, g(z) is bounded for Im(z) > 1. Similarly, it is bounded for Im(z) < —1. It remains to note that g(z) being
continuous, is bounded in |Im(z)| < 1, |Re(z)| < 1/2. Hence g(z) is bounded in the entire C and must be a
constant.

. 1
mcotmtz = lim .
N—>oo zZ+n
|n|<N

Infinite products

Before discussing infinite products of holomorphic functions, we will need some preliminaries on infinite
products of numbers.
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Definition 5. Given a sequence of complex numbers {a,}, we say that the product

(o]
(1+ay,)
=1

n

converges if the limit
N
lim l+a
N—>oo ( n)
n=1

of the partial products exists.

Proposition 6. If ) |a,| < co then the product [;_,(1 + a,;) converges. Moreover, the product converges to 0 if and
only if one of the factors is 0.

Proof. 1If } |a,| converges, then for n large enough |a,| < 1/2. Disregarding, if necessary, the initial terms, we
may assume that for all n € IN we can define Log(1 + a,,) by its principle branch. Hence, the partial products

are
| | 1+a,)=
n=1

where By =) -y~ Log(1 + a,,). Since for |z| < 1/2 we have |Log(1 + z)| < 2|z|,we can conclude that the series
defining By absolutely converges. If B :=lim By, by the continuity of Log we find

eLog (1+ay,) = N,

:]z

n=1

N

]_I(l +a,)— eb.

n=1
The resulting limit is nonzero, unless we have omitted a zero factor in the very beginning. O

Definition 7. The infinite product [];2;(1 +a,,) is said to be absolutely convergent iff }_ Log(1 +a,,) is absolutely
convergent.

Proposition 8. The product [];2,(1 + ay,) is absolutely convergent iff y_|a,| converges.
Proof. In either case we necessarily have a,, — 0. Hence for n large enough we have
1 3
Elanl < |L0g(1 + an)| < Elanl'

Therefore
Z|un| converges ZLog(l +4a,) converges .



