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Lecture 16

Let us start today’s lecture by recalling an important result allowing to construct holomorphic functions as
limits of holomorphic functions.

Theorem 1 (Weierstrass’ theorem). Consider a sequence {fn}n∈N, where fn is a function holomorphic in an open set
Un. Assume that U1 ⊂U2 ⊂U3 ⊂ . . . and let U := ∪Un.
If (fn)n∈N converges to a limit function f : U →C uniformly on every compact subset1 of U , then

• f (z) is holomorphic in U

• f ′(z) = limn→∞ f
′
n(z) and convergence is uniform on every compact subset of U .

Proof. First observe that for every compact K ⊂ U union ∪Un is an open cover of K , hence there exists N > 0
such that K ⊂UN ⊂U .

Take any z0 ∈ U and fix closed disk BR(z0). Take N ∈N such that BR(z0) ⊂ Un for n > N . In BR(z0), sequence
{fn}n>N uniformly converges to a function f (z), hence for every loop γ ⊂ BR(z0) we have∣∣∣∣∣∣

∫
γ
fn(z)dz −

∫
γ
f (z)dz

∣∣∣∣∣∣ 6 Length(γ) · sup
z∈γ
|fn(z)− f (z)|

Taking z → ∞ and using the fact that fn being holomorphic implies
∫
γ
fn(z)dz = 0 (Cauchy’s theorem), we

conclude that ∫
γ
f (z)dz = 0

and f (z) is holomorphic in BR(z0) by Morera’s theorem. Since BR(z0) ⊂ U is arbitrary, f (z) is holomorphic in
the entire U . This proves the first assertion.

To get the uniform convergence of derivatives, we use Cauchy’s formula for derivatives in BR(z0):

f ′n(z) =
1

2πiii

∫
|z−z0 |=R

f (ζ)
(ζ − z)2 dζ

therefore for z ∈ BR/2(z0)

|f ′(z)− f ′n(z)| =
∣∣∣∣∣∣ 1
2πiii

∫
|z−z0 |=R

f (ζ)− fn(ζ)
(ζ − z)2 dζ

∣∣∣∣∣∣ 6 1
2π
· 1

4R2 ·Length(γ) · sup
z∈BR(z0)

|f (z)− fn(z)|.

As n→∞ the right hand side converges to 0 in BR/2(z0). It remains to notice that any compact K ⊂ U can be
covered by a finite collection of disks BR/2(z0) such that BR(z0) ⊂U .

Example 2. Let
∑∞

0 akz
k be an infinite power series with radius of convergence R. Then sequence of polyno-

mials

fn(z) =
n∑
0

akz
k

uniformly converges in the disk BR(0) and the limiting functions is holomorphic in this disk.

Infinite series and products

Partial fraction representation

Assume that function f (z) is meromorphic in a connected open set U and has poles {ζk}. To every pole ζk of
order nk we associate its principle part

Pk(z) :=
nk∑
i=1

ai
(z − ζk)i

.

1 That is for every compact K ⊂U and every ε > 0 there exists N =N (K,ε) ∈N such that |f (z)− fn(z)| < ε for each n > N and any z ∈ K .
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If f (z) has finitely many poles in U we may write f (z) as

f (z) = g(z) +
∑
k

Pk(z), (1)

where g(z) is holomorphic in U .

If f (z) has infinitely many poles in U , the above representation (1) includes infinite sum which may not be
convergent. The point of Mittag-Leffler theorem is that, under extra assumptions, it is possible to modify the
expression on the right-hand-side of (1) turning it into a convergent infinite sum.

Theorem 3 (Mittag-Leffler theorem). Let {ζk} ⊂ C be a sequence such that limk→∞ ζk =∞ and let {Pk(z)}

Pk(z) =
nk∑
i=1

ai
(z − ζk)i

be an arbitrary collection of ‘principle parts’ of poles at ζk . Then

• There exists a meromorphic function f (z) in C with poles just at {ζk} and prescribed principle parts Pk(z).

• Any such f (z) can be written as
f (z) = g(z) +

∑
k

(Pk(z)− qk(z))

where g(z) is holomorphic in entire C and {qk(z)} are polynomials.

Proof. Without loss of generality we assume that 0 < {ζk}. The idea is that instead of summing Pk(z) which
might produce a divergent infinite series, we can sum Pk(z) − qk(z), where qk(z) is the Taylor polynomial ap-
proximating Pk(z) so that Pk(z)− qk(z) is the remainder term in the Taylor’s series. By a smart choice of degrees
of {qk(z)} we will guarantee that {Pk(z)− qk(z)} will form an absolutely convergent series in C.

Not let us fill in the details. Let qk(z) be the polynomial part of the Taylor’s formula for Pk(z) at z0 = 0 of degree
Nk , where Nk is a number to be chosen later:

Pk(z) = qk(z) +ψk,Nk (z)z
Nk+1.

We now that the remained ψk,Nk has an integral representation

ψk,Nk (z) =
1

2πiii

∫
C

Pk(ζ)
ζNk+1(ζ − z)

dζ.

If we choose C = {|z| = |ζk |2 }, the above representation will hold in the disk B|ζk |/2(0). Moreover, for |z| < |ζk |/4 we
have the following bound:

|ψk,Nk (z)| 6
1

2π
2π|ζk |

2︸ ︷︷ ︸
Length(γ)

Mk

(|ζk |/2)Nk+1 |ζk |
4

,

where Mk = sup|z|=|ζk |/2 Pk(z).

Hence

|Pk(z)− qk(z)| 6 2Mk

(
2|z|
|ζk |

)Nk+1

.

Let us choose Nk large enough so that Mk 6 2Nk−k . Then, as long as |z| < |ζk |/4, we have

|Pk(z)− qk(z)| 6 2−k .

Now, consider any disk BR(0). Then ∑
|ζk |/4>R

(Pk(z)− qk(z))

uniformly converges in BR(0) to a holomorphic function in BR(0), and∑
k

(Pk(z)− qk(z)) =
∑
|ζk |/46R

(Pk(z)− qk(z)) +
∑
|ζk |/4>R

(Pk(z)− qk(z))
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is well-defined meromorphic function in BR(0) with principle parts Pk(z) at ζk . Since R is arbitrary, h(z) :=∑
k(Pk(z) − qk(z)) is a well-defined meromorphic function in C with prescribed principle parts of poles at ζk .

This proves the first statement.

To prove the second statement, consider any meromorphic function f (z) with prescribed poles and principle
parts. Then g(z) := f (z)− h(z) is holomorphic in the entire C.

Example 4. Consider function f (z) = πcotπz = π cosπz
sinπz . This function has poles at all points ζn = n,n ∈Z with

principle part Pn(z) =
1

z+n
. Naively, we would write

πcotπz “ = ” g(z) +
∑
n∈Z

1
z+n

.

Unfortunately, the above infinite sum needs to be properly understood. One way to interpret it is to write it as

h(z) :=
1
z

+
∑

n∈Z,n,0

( 1
z+n

− 1
n

)
.

Then the new infinite sum above converges uniformly in every closed disk BR(0), since∣∣∣∣∣ 1
z+n

− 1
n

∣∣∣∣∣ 6 2R
n2

for n large enough.

Therefore both πcotπz and h(z) represent meromorphic functions in C with the same set of poles and principle
parts at these poles. Hence

g(z) := πcotπz − h(z)

is an entire holomorphic function.

We claim that g(z) = 0. To prove it, we will show that g(z) is bounded and must be a constant by Liouville
theorem. Since both g(z) and πcotπz are odd, this constant must be 0.

First, note that both πcotπz and h(z) are periodic as z 7→ z+ 1. Hence it is enough to prove boundedness in the
strip |<(z)| 6 1/2. For=(z) > 1, we have

cotπz = iii
eiiiπz + e−iiiπz

eiiiπz − e−iiiπz
= iii
e−2πy + e−2πiiix

e−2πy − e−2πiiix

which is clearly bounded.

It remains to prove that h(z) = 1
z +

∑
n∈Z,n,0

(
1
z+n −

1
n

)
. is bounded in the same region. Indeed, we can rewrite

∑
n∈Z,n,0

( 1
z+n

− 1
n

)
=
∞∑
n=1

2z
z2 −n2

so that ∣∣∣∣∣∣∣
∞∑
n=1

2z
z2 −n2

∣∣∣∣∣∣∣ 6 C
∞∑
n=1

y

y2 +n2 < C

∫ ∞
0

y

y2 + x2 dx = C
π
2
.

So, g(z) is bounded for =(z) > 1. Similarly, it is bounded for =(z) < −1. It remains to note that g(z) being
continuous, is bounded in |=(z)| 6 1, |<(z)| 6 1/2. Hence g(z) is bounded in the entire C and must be a
constant.

πcotπz = lim
N→∞

∑
|n|6N

1
z+n

.

Infinite products

Before discussing infinite products of holomorphic functions, we will need some preliminaries on infinite
products of numbers.
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Definition 5. Given a sequence of complex numbers {an}, we say that the product

∞∏
n=1

(1 + an)

converges if the limit

lim
N→∞

N∏
n=1

(1 + an)

of the partial products exists.

Proposition 6. If
∑
|an| <∞ then the product

∏∞
n=1(1 + an) converges. Moreover, the product converges to 0 if and

only if one of the factors is 0.

Proof. If
∑
|an| converges, then for n large enough |an| < 1/2. Disregarding, if necessary, the initial terms, we

may assume that for all n ∈N we can define Log(1 + an) by its principle branch. Hence, the partial products
are

N∏
n=1

(1 + an) =
N∏
n=1

eLog(1+an) =: eBN ,

where BN =
∑
n=1N Log(1 + an). Since for |z| 6 1/2 we have |Log(1 + z)| 6 2|z|,we can conclude that the series

defining BN absolutely converges. If B := limBN , by the continuity of Log we find

N∏
n=1

(1 + an)→ eB.

The resulting limit is nonzero, unless we have omitted a zero factor in the very beginning.

Definition 7. The infinite product
∏∞
n=1(1 +an) is said to be absolutely convergent iff

∑
Log(1 +an) is absolutely

convergent.

Proposition 8. The product
∏∞
n=1(1 + an) is absolutely convergent iff

∑
|an| converges.

Proof. In either case we necessarily have an→ 0. Hence for n large enough we have

1
2
|an| < |Log(1 + an)| < 3

2
|an|.

Therefore ∑
|an| converges ⇐⇒

∑
Log(1 + an) converges .


