Lecture 16

Let us start today's lecture by recalling an important result allowing to construct holomorphic functions as limits of holomorphic functions.

Theorem 1 (Weierstrass' theorem). Consider a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$, where f_{n} is a function holomorphic in an open set U_{n}. Assume that $U_{1} \subset U_{2} \subset U_{3} \subset \ldots$ and let $U:=\cup U_{n}$.
If $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to a limit function $f: U \rightarrow \mathbb{C}$ uniformly on every compact subset ${ }^{1}$ of U, then

- $f(z)$ is holomorphic in U
- $f^{\prime}(z)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(z)$ and convergence is uniform on every compact subset of U.

Proof. First observe that for every compact $K \subset U$ union $\cup U_{n}$ is an open cover of K, hence there exists $N>0$ such that $K \subset U_{N} \subset U$.
Take any $z_{0} \in U$ and fix closed disk $\overline{B_{R}}\left(z_{0}\right)$. Take $N \in \mathbb{N}$ such that $\overline{B_{R}}\left(z_{0}\right) \subset U_{n}$ for $n \geqslant N$. In $\overline{B_{R}}\left(z_{0}\right)$, sequence $\left\{f_{n}\right\}_{n \geqslant N}$ uniformly converges to a function $f(z)$, hence for every loop $\gamma \subset B_{R}\left(z_{0}\right)$ we have

$$
\left|\int_{\gamma} f_{n}(z) d z-\int_{\gamma} f(z) d z\right| \leqslant \operatorname{Length}(\gamma) \cdot \sup _{z \in \gamma}\left|f_{n}(z)-f(z)\right|
$$

Taking $z \rightarrow \infty$ and using the fact that f_{n} being holomorphic implies $\int_{\gamma} f_{n}(z) d z=0$ (Cauchy's theorem), we conclude that

$$
\int_{\gamma} f(z) d z=0
$$

and $f(z)$ is holomorphic in $B_{R}\left(z_{0}\right)$ by Morera's theorem. Since $B_{R}\left(z_{0}\right) \subset U$ is arbitrary, $f(z)$ is holomorphic in the entire U. This proves the first assertion.

To get the uniform convergence of derivatives, we use Cauchy's formula for derivatives in $B_{R}\left(z_{0}\right)$:

$$
f_{n}^{\prime}(z)=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=R} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta
$$

therefore for $z \in B_{R / 2}\left(z_{0}\right)$

$$
\left|f^{\prime}(z)-f_{n}^{\prime}(z)\right|=\left|\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=R} \frac{f(\zeta)-f_{n}(\zeta)}{(\zeta-z)^{2}} d \zeta\right| \leqslant \frac{1}{2 \pi} \cdot \frac{1}{4 R^{2}} \cdot \text { Length }(\gamma) \cdot \sup _{z \in B_{R}\left(z_{0}\right)}\left|f(z)-f_{n}(z)\right|
$$

As $n \rightarrow \infty$ the right hand side converges to 0 in $B_{R / 2}\left(z_{0}\right)$. It remains to notice that any compact $K \subset U$ can be covered by a finite collection of disks $B_{R / 2}\left(z_{0}\right)$ such that $B_{R}\left(z_{0}\right) \subset U$.

Example 2. Let $\sum_{0}^{\infty} a_{k} z^{k}$ be an infinite power series with radius of convergence R. Then sequence of polynomials

$$
f_{n}(z)=\sum_{0}^{n} a_{k} z^{k}
$$

uniformly converges in the disk $B_{R}(0)$ and the limiting functions is holomorphic in this disk.

Infinite series and products

Partial fraction representation

Assume that function $f(z)$ is meromorphic in a connected open set U and has poles $\left\{\zeta_{k}\right\}$. To every pole ζ_{k} of order n_{k} we associate its principle part

$$
P_{k}(z):=\sum_{i=1}^{n_{k}} \frac{a_{i}}{\left(z-\zeta_{k}\right)^{i}}
$$

[^0]If $f(z)$ has finitely many poles in U we may write $f(z)$ as

$$
\begin{equation*}
f(z)=g(z)+\sum_{k} P_{k}(z) \tag{1}
\end{equation*}
$$

where $g(z)$ is holomorphic in U.
If $f(z)$ has infinitely many poles in U, the above representation (1) includes infinite sum which may not be convergent. The point of Mittag-Leffler theorem is that, under extra assumptions, it is possible to modify the expression on the right-hand-side of (1) turning it into a convergent infinite sum.

Theorem 3 (Mittag-Leffler theorem). Let $\left\{\zeta_{k}\right\} \subset \mathbb{C}$ be a sequence such that $\lim _{k \rightarrow \infty} \zeta_{k}=\infty$ and let $\left\{P_{k}(z)\right\}$

$$
P_{k}(z)=\sum_{i=1}^{n_{k}} \frac{a_{i}}{\left(z-\zeta_{k}\right)^{i}}
$$

be an arbitrary collection of 'principle parts' of poles at ζ_{k}. Then

- There exists a meromorphic function $f(z)$ in \mathbb{C} with poles just at $\left\{\zeta_{k}\right\}$ and prescribed principle parts $P_{k}(z)$.
- Any such $f(z)$ can be written as

$$
f(z)=g(z)+\sum_{k}\left(P_{k}(z)-q_{k}(z)\right)
$$

where $g(z)$ is holomorphic in entire \mathbb{C} and $\left\{q_{k}(z)\right\}$ are polynomials.
Proof. Without loss of generality we assume that $0 \notin\left\{\zeta_{k}\right\}$. The idea is that instead of summing $P_{k}(z)$ which might produce a divergent infinite series, we can sum $P_{k}(z)-q_{k}(z)$, where $q_{k}(z)$ is the Taylor polynomial approximating $P_{k}(z)$ so that $P_{k}(z)-q_{k}(z)$ is the remainder term in the Taylor's series. By a smart choice of degrees of $\left\{q_{k}(z)\right\}$ we will guarantee that $\left\{P_{k}(z)-q_{k}(z)\right\}$ will form an absolutely convergent series in \mathbb{C}.
Not let us fill in the details. Let $q_{k}(z)$ be the polynomial part of the Taylor's formula for $P_{k}(z)$ at $z_{0}=0$ of degree N_{k}, where N_{k} is a number to be chosen later:

$$
P_{k}(z)=q_{k}(z)+\psi_{k, N_{k}}(z) z^{N_{k}+1}
$$

We now that the remained $\psi_{k, N_{k}}$ has an integral representation

$$
\psi_{k, N_{k}}(z)=\frac{1}{2 \pi i} \int_{C} \frac{P_{k}(\zeta)}{\zeta^{N_{k}+1}(\zeta-z)} d \zeta
$$

If we choose $C=\left\{|z|=\frac{\left|\zeta_{k}\right|}{2}\right\}$, the above representation will hold in the disk $B_{\left|\zeta_{k}\right| / 2}(0)$. Moreover, for $|z|<\left|\zeta_{k}\right| / 4$ we have the following bound:

$$
\left|\psi_{k, N_{k}}(z)\right| \leqslant \frac{1}{2 \pi} \underbrace{\frac{2 \pi\left|\zeta_{k}\right|}{2}}_{\text {Length }(\gamma)} \frac{M_{k}}{\left(\left|\zeta_{k}\right| / 2\right)^{N_{k}+1} \frac{\left|\zeta_{k}\right|}{4}},
$$

where $M_{k}=\sup _{|z|=\left|\zeta_{k}\right| / 2} P_{k}(z)$.
Hence

$$
\left|P_{k}(z)-q_{k}(z)\right| \leqslant 2 M_{k}\left(\frac{2|z|}{\left|\zeta_{k}\right|}\right)^{N_{k}+1}
$$

Let us choose N_{k} large enough so that $M_{k} \leqslant 2^{N_{k}-k}$. Then, as long as $|z|<\left|\zeta_{k}\right| / 4$, we have

$$
\left|P_{k}(z)-q_{k}(z)\right| \leqslant 2^{-k}
$$

Now, consider any disk $B_{R}(0)$. Then

$$
\sum_{\left|\zeta_{k}\right| / 4>R}\left(P_{k}(z)-q_{k}(z)\right)
$$

uniformly converges in $\bar{B}_{R}(0)$ to a holomorphic function in $\bar{B}_{R}(0)$, and

$$
\sum_{k}\left(P_{k}(z)-q_{k}(z)\right)=\sum_{\left|\zeta_{k}\right| / 4 \leqslant R}\left(P_{k}(z)-q_{k}(z)\right)+\sum_{\left|\zeta_{k}\right| / 4>R}\left(P_{k}(z)-q_{k}(z)\right)
$$

is well-defined meromorphic function in $B_{R}(0)$ with principle parts $P_{k}(z)$ at ζ_{k}. Since R is arbitrary, $h(z):=$ $\sum_{k}\left(P_{k}(z)-q_{k}(z)\right)$ is a well-defined meromorphic function in \mathbb{C} with prescribed principle parts of poles at ζ_{k}. This proves the first statement.

To prove the second statement, consider any meromorphic function $f(z)$ with prescribed poles and principle parts. Then $g(z):=f(z)-h(z)$ is holomorphic in the entire \mathbb{C}.

Example 4. Consider function $f(z)=\pi \cot \pi z=\pi \frac{\cos \pi z}{\sin \pi z}$. This function has poles at all points $\zeta_{n}=n, n \in \mathbb{Z}$ with principle part $P_{n}(z)=\frac{1}{z+n}$. Naively, we would write

$$
\pi \cot \pi z^{\prime \prime}=" g(z)+\sum_{n \in \mathbb{Z}} \frac{1}{z+n}
$$

Unfortunately, the above infinite sum needs to be properly understood. One way to interpret it is to write it as

$$
h(z):=\frac{1}{z}+\sum_{n \in \mathbb{Z}, n \neq 0}\left(\frac{1}{z+n}-\frac{1}{n}\right) .
$$

Then the new infinite sum above converges uniformly in every closed disk $\overline{B_{R}(0)}$, since

$$
\left|\frac{1}{z+n}-\frac{1}{n}\right| \leqslant \frac{2 R}{n^{2}}
$$

for n large enough.
Therefore both $\pi \cot \pi z$ and $h(z)$ represent meromorphic functions in \mathbb{C} with the same set of poles and principle parts at these poles. Hence

$$
g(z):=\pi \cot \pi z-h(z)
$$

is an entire holomorphic function.
We claim that $g(z)=0$. To prove it, we will show that $g(z)$ is bounded and must be a constant by Liouville theorem. Since both $g(z)$ and $\pi \cot \pi z$ are odd, this constant must be 0 .
First, note that both $\pi \cot \pi z$ and $h(z)$ are periodic as $z \mapsto z+1$. Hence it is enough to prove boundedness in the $\operatorname{strip}|\operatorname{Re}(z)| \leqslant 1 / 2$. For $\operatorname{Im}(z)>1$, we have

$$
\cot \pi z=\boldsymbol{i} \frac{e^{i \pi z}+e^{-i \pi z}}{e^{i \pi z}-e^{-i \pi z}}=\boldsymbol{i} \frac{e^{-2 \pi y}+e^{-2 \pi i x}}{e^{-2 \pi y}-e^{-2 \pi i x}}
$$

which is clearly bounded.
It remains to prove that $h(z)=\frac{1}{z}+\sum_{n \in \mathbb{Z}, n \neq 0}\left(\frac{1}{z+n}-\frac{1}{n}\right)$. is bounded in the same region. Indeed, we can rewrite

$$
\sum_{n \in \mathbb{Z}, n \neq 0}\left(\frac{1}{z+n}-\frac{1}{n}\right)=\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}
$$

so that

$$
\left|\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}\right| \leqslant C \sum_{n=1}^{\infty} \frac{y}{y^{2}+n^{2}}<C \int_{0}^{\infty} \frac{y}{y^{2}+x^{2}} d x=C \frac{\pi}{2}
$$

So, $g(z)$ is bounded for $\operatorname{Im}(z)>1$. Similarly, it is bounded for $\operatorname{Im}(z)<-1$. It remains to note that $g(z)$ being continuous, is bounded in $|\operatorname{Im}(z)| \leqslant 1,|\mathfrak{R e}(z)| \leqslant 1 / 2$. Hence $g(z)$ is bounded in the entire \mathbb{C} and must be a constant.

$$
\pi \cot \pi z=\lim _{N \rightarrow \infty} \sum_{|n| \leqslant N} \frac{1}{z+n} .
$$

Infinite products

Before discussing infinite products of holomorphic functions, we will need some preliminaries on infinite products of numbers.

Definition 5. Given a sequence of complex numbers $\left\{a_{n}\right\}$, we say that the product

$$
\prod_{n=1}^{\infty}\left(1+a_{n}\right)
$$

converges if the limit

$$
\lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left(1+a_{n}\right)
$$

of the partial products exists.
Proposition 6. If $\sum\left|a_{n}\right|<\infty$ then the product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges. Moreover, the product converges to 0 if and only if one of the factors is 0 .

Proof. If $\sum\left|a_{n}\right|$ converges, then for n large enough $\left|a_{n}\right|<1 / 2$. Disregarding, if necessary, the initial terms, we may assume that for all $n \in \mathbb{N}$ we can define $\log \left(1+a_{n}\right)$ by its principle branch. Hence, the partial products are

$$
\prod_{n=1}^{N}\left(1+a_{n}\right)=\prod_{n=1}^{N} e^{\log \left(1+a_{n}\right)}=: e^{B_{N}}
$$

where $B_{N}=\sum_{n=1^{N}} \log \left(1+a_{n}\right)$. Since for $|z| \leqslant 1 / 2$ we have $|\log (1+z)| \leqslant 2|z|$, we can conclude that the series defining B_{N} absolutely converges. If $B:=\lim B_{N}$, by the continuity of \log we find

$$
\prod_{n=1}^{N}\left(1+a_{n}\right) \rightarrow e^{B}
$$

The resulting limit is nonzero, unless we have omitted a zero factor in the very beginning.
Definition 7. The infinite product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ is said to be absolutely convergent iff $\sum \log \left(1+a_{n}\right)$ is absolutely convergent.

Proposition 8. The product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ is absolutely convergent iff $\sum\left|a_{n}\right|$ converges.
Proof. In either case we necessarily have $a_{n} \rightarrow 0$. Hence for n large enough we have

$$
\frac{1}{2}\left|a_{n}\right|<\left|\log \left(1+a_{n}\right)\right|<\frac{3}{2}\left|a_{n}\right| .
$$

Therefore

$$
\sum\left|a_{n}\right| \text { converges } \Longleftrightarrow \sum \log \left(1+a_{n}\right) \text { converges }
$$

[^0]: ${ }^{1}$ That is for every compact $K \subset U$ and every $\epsilon>0$ there exists $N=N(K, \epsilon) \in \mathbb{N}$ such that $\left|f(z)-f_{n}(z)\right|<\epsilon$ for each $n>N$ and any $z \in K$.

