Lecture 17

Infinite products

Before discussing infinite products of holomorphic functions, we will need some preliminaries on infinite products of numbers.

Definition 1. Given a sequence of complex numbers $\left\{a_{n}\right\}$, we say that the product

$$
\prod_{n=1}^{\infty}\left(1+a_{n}\right)
$$

converges if the limit

$$
\lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left(1+a_{n}\right)
$$

of the partial products exists.
Often it is additionally assumed that all but finitely many factors are non-zero, and then the convergence is considered for the product of these non-zero factors.

Proposition 2. If $\sum\left|a_{n}\right|<\infty$ then the product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges. Moreover, the product converges to 0 if and only if one of the factors is 0 .

Proof. If $\sum\left|a_{n}\right|$ converges, then for n large enough $\left|a_{n}\right|<1 / 2$. Disregarding, if necessary, the initial terms, we may assume that for all $n \in \mathbb{N}$ we can define $\log \left(1+a_{n}\right)$ by its principle branch. Hence, the partial products are

$$
\prod_{n=1}^{N}\left(1+a_{n}\right)=\prod_{n=1}^{N} e^{\log \left(1+a_{n}\right)}=: e^{B_{N}},
$$

where $B_{N}=\sum_{n=1}^{N} \log \left(1+a_{n}\right)$. Since for $|z| \leqslant 1 / 2$ we have $|\log (1+z)| \leqslant 2|z|$, we can conclude that the series defining B_{N} absolutely converges. If $B:=\lim B_{N}$, by the continuity of \log we find

$$
\prod_{n=1}^{N}\left(1+a_{n}\right) \rightarrow e^{B}
$$

The resulting limit is nonzero, unless we have omitted a zero factor in the very beginning.
Definition 3. The infinite product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ is said to be absolutely convergent iff $\sum \log \left(1+a_{n}\right)$ is absolutely convergent.

Proposition 4. The product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ is absolutely convergent iff $\sum\left|a_{n}\right|$ converges.
Proof. In either case we necessarily have $a_{n} \rightarrow 0$. Hence for n large enough we have

$$
\frac{1}{2}\left|a_{n}\right|<\left|\log \left(1+a_{n}\right)\right|<\frac{3}{2}\left|a_{n}\right| .
$$

Therefore

$$
\sum\left|a_{n}\right| \text { converges } \Longleftrightarrow \sum \log \left(1+a_{n}\right) \text { converges absolutely } .
$$

Weierstrass factorization theorem

If $f(z)$ is a nowhere zero entire function, then there is a well-defined logarithm of $f(z)$, i.e., an entire function $g(z)$ such that

$$
e^{g(z)}=f(z) .
$$

More generally, if $f(z)$ has finitely many $\operatorname{zeros}^{1}\left\{a_{k}\right\}_{k=1}^{N}$ away from the origin, then we can factor $f(z)$ as

$$
\begin{equation*}
f(z)=z^{M} e^{g(z)} \prod_{k=1}^{N}\left(1-\frac{z}{a_{k}}\right) \tag{1}
\end{equation*}
$$

where $g(z)$ is an entire function. Today we will address the following question:
Question. To what extent can we generalize (1) if $f(z)$ has infinitely many zeros in \mathbb{C} ?
From now on we assume that $f(z)$ has infinitely many zeros $\left\{a_{k}\right\}$ apart from 0 . If product $\prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right)$ converges uniformly on compact subsets of \mathbb{C}, then it defines an entire function with zeros only at $\left\{a_{k}\right\}$. Therefore, we can write

$$
\frac{f(z)}{\prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right)}=z^{M} e^{g(z)}
$$

where M is the order of zero of $f(z)$ at $z=0$ and $g(z)$ is some entire function. Equivalently

$$
f(z)=z^{M} e^{g(z)} \prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right)
$$

To ensure that the product $\prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right)$ uniformly converges on every compact set it is enough to assume that the series $\sum \frac{1}{\left|a_{k}\right|}$ converges. Indeed, on every disk $B_{R}(0)$ for k large enough we have

$$
\left|\log \left(1-z / a_{k}\right)\right|<R /\left|a_{k}\right|
$$

so the sum of logarithms absolutely converges.
To find factorization for $f(z)$ in general, we have to modify factors of infinite product to make it absolutely convergent. This can be done by a trick similar to the one used in the proof of Mittag-Leffler theorem.

Theorem 5. There exists an entire function with arbitrarily prescribed zeros $\left\{a_{k}\right\}$, as long as $a_{k} \rightarrow \infty$ if the numbers of zeros is infinite. Moreover, every entire function with zeros exactly at $\left\{a_{k}\right\}$ can be written as

$$
f(z)=z^{M} e^{g(z)} \prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right) e^{\frac{z}{a_{k}}+\frac{1}{2}\left(\frac{z}{a_{k}}\right)^{2}+\cdots+\frac{1}{N_{k}}\left(\frac{z}{a_{k}}\right)^{N_{k}}} .
$$

where the product is taken over all $a_{k} \neq 0,\left\{N_{k}\right\}$ are integers and $g(z)$ is an entire function.
Proof. We plan to show that there exists a sequence of polynomials $q_{k}(z)$ such that the product

$$
\prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right) e^{q_{k}(z)}
$$

uniformly converges on compact sets.
We will find polynomials such that the infinite sum

$$
\sum_{k=1}^{\infty}\left(\log \left(1-z / a_{k}\right)+p_{k}(z)\right):=\sum_{k=1}^{\infty} \psi_{k}(z)
$$

uniformly converges on the compact sets. Given $z \in B_{R}(0)$, for a fixed R the principle branch of logarithm is well-defined for k large enough, since $a_{k} \rightarrow \infty$.
As for the proof of Mittag-Leffler theorem, we will choose $-p_{k}(z)$ to be the initial segment of the Taylor's series of $\log \left(1-z / a_{k}\right)$. Namely, as long as $\left|z / a_{k}\right|<1$, we have

$$
\log \left(1-\frac{z}{a_{k}}\right)=-\frac{z}{a_{k}}-\frac{1}{2}\left(\frac{z}{a_{k}}\right)^{2}-\cdots-\frac{1}{N_{k}}\left(\frac{z}{a_{k}}\right)^{N_{k}}+\psi_{k}(z)
$$

where $N_{k} \in \mathbb{N}$ to be chosen later.

[^0]As before, for $z \in B_{R}(0)$ we have an estimate for the remainder term in the Taylor's formula:

$$
\psi_{k}(z)=-\frac{1}{N_{k}+1}\left(\frac{z}{a_{k}}\right)^{N_{k}+1}-\frac{1}{N_{k}+2}\left(\frac{z}{a_{k}}\right)^{N_{k}+2}-\ldots
$$

so

$$
\left|\psi_{k}(z)\right| \leqslant \frac{1}{N_{k}+1}\left(\frac{R}{\left|a_{k}\right|}\right)^{N_{k}+1} \frac{1}{1-\frac{R}{\left|a_{k}\right|}} .
$$

Now we choose $\left\{N_{k}\right\}$ such that the infinite series

$$
\sum \frac{1}{N_{k}+1}\left(\frac{R}{\left|a_{k}\right|}\right)^{N_{k}+1}
$$

converges, e.g., by taking $N_{k}=k$. Then the infinite product

$$
h(z):=\prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right) e^{q_{k}(z)}
$$

with

$$
q_{k}(z)=\frac{z}{a_{k}}+\frac{1}{2}\left(\frac{z}{a_{k}}\right)^{2}+\cdots+\frac{1}{N_{k}}\left(\frac{z}{a_{k}}\right)^{N_{k}}
$$

converges on compact sets and defines an entire function with zeros at a_{k}.
Hence if $f(z)$ is any other function with the same zeros (and multiplicities) besides $z=0$, then

$$
f(z)=z^{M} e^{g(z)} h(z)
$$

Corollary 6. Any meromorphic function in \mathbb{C} is a quotient of two holomorphic functions.
Proof. Assume that function $f(z)$ is meromorphic with poles at $\left\{\zeta_{k}\right\}$. Construct a holomorphic function $h(z)$ with zeros at $\left\{\zeta_{k}\right\}$ and the same orders as the orders of poles of $f(z)$. Then

$$
g(z):=f(z) h(z)
$$

is holomorphic in entire plane \mathbb{C}, so

$$
f(z)=\frac{g(z)}{h(z)}
$$

Example 7. Consider a function $f(z)=\sin \pi z$. It has zeros of order 1 at all integer numbers. It is not hard to check (see homework) that the product

$$
\prod_{n \neq 0}\left(1-\frac{z}{n}\right) e^{z / n}
$$

is uniformly convergent on compact sets. Therefore,

$$
\sin \pi z=z e^{g(z)} \prod_{n \neq 0}\left(1-\frac{z}{n}\right) e^{z / n}
$$

for some entire function $g(z)$.
Taking logarithmic derivatives of both sides, we find

$$
\pi \cot \pi z=\frac{1}{z}+g^{\prime}(z)+\sum_{n \neq 0}\left(\frac{1}{z-n}+\frac{1}{n}\right) .
$$

From the previous class we know that $g^{\prime}(z)=0$, so $g(z)=$ const. It remains to use the fact that $\sin (\pi z) / z \rightarrow 0$ as $z \rightarrow 0$ to conclude that

$$
\sin \pi z=\pi z \prod_{n \neq 0}\left(1-\frac{z}{n}\right) e^{z / n}=\pi z \prod_{z \in \mathbb{N}}\left(1-\frac{z^{2}}{n^{2}}\right),
$$

where in the last identity we paired together factors corresponding to n and $-n$.

Genus and order of entire function

It is often possible to choose powers N_{k} in the product

$$
\prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right) e^{q_{k}(z)}, \quad q_{k}(z)=\frac{z}{a_{k}}+\frac{1}{2}\left(\frac{z}{a_{k}}\right)^{2}+\cdots+\frac{1}{N_{k}}\left(\frac{z}{a_{k}}\right)^{N_{k}}
$$

to be constant $N_{k}=h$ for all k. From the proof of Weiestrass theorem, we saw that in this case the series

$$
\sum \frac{1}{h+1}\left(\frac{R}{\left|a_{k}\right|}\right)^{h+1}
$$

must be convergent for any R, that is $\sum 1 /\left|a_{k}\right|^{h+1}<\infty$. The smallest h for each it holds is called the genus of the product

$$
\prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right) e^{q_{k}(z)}
$$

and the product is called the canonical product.
Definition 8. If function $f(z)$ can be represented as

$$
f(z)=z^{M} e^{g(z)} \prod_{k=1}^{\infty}\left(1-\frac{z}{a_{k}}\right) e^{q_{k}(z)} .
$$

where $g(z)$ and each $q_{k}(z)$ are polynomials of degree $\leqslant h$, and h is the smallest number for each such expression is possible, then h is called the genus of $f(z)$.

Example 9. From the infinite product for $\sin \pi z$ we see that is has genus 1. Any polynomial has genus zero.
Informally, the genus of canonical product controls how quickly its zeros escape to infinity.
Denote by $M(r)$ the maximum of $|f(z)|$ on $\{|z|=R\}$.
Definition 10. The order of an entire function $f(z)$ is defined as

$$
\lambda:=\underset{r \rightarrow \infty}{\limsup } \frac{\log \log M(r)}{\log r}
$$

Equivalently it is the smallest number such that

$$
M(R) \leqslant e^{R^{\lambda+\epsilon}}
$$

for all $\epsilon>0$ and all R sufficiently large.
The genus and order of an entire function are closely related to each other. We leave the following theorem without a proof.

Theorem 11 (Hadamard Factorization Theorem). The genus and order of an entire function satisfy

$$
h \leqslant \lambda \leqslant h+1
$$

Roughly speaking, Hadamard theorem provide control of the growth rate of $|f(z)|$ in terms of the growth of the number of zeros of $f(z)$ in $B_{R}(0)$.

[^0]: ${ }^{1}$ If a_{i} is a zero of order n_{i}, then we assume that a_{i} appears exactly n_{i} times in the sequence $\left\{a_{k}\right\}$.

