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Lecture 17

Infinite products

Before discussing infinite products of holomorphic functions, we will need some preliminaries on infinite
products of numbers.

Definition 1. Given a sequence of complex numbers {an}, we say that the product

∞∏
n=1

(1 + an)

converges if the limit

lim
N→∞

N∏
n=1

(1 + an)

of the partial products exists.

Often it is additionally assumed that all but finitely many factors are non-zero, and then the convergence is
considered for the product of these non-zero factors.

Proposition 2. If
∑
|an| <∞ then the product

∏∞
n=1(1 + an) converges. Moreover, the product converges to 0 if and

only if one of the factors is 0.

Proof. If
∑
|an| converges, then for n large enough |an| < 1/2. Disregarding, if necessary, the initial terms, we

may assume that for all n ∈N we can define Log(1 + an) by its principle branch. Hence, the partial products
are

N∏
n=1

(1 + an) =
N∏
n=1

eLog(1+an) =: eBN ,

where BN =
∑N
n=1 Log(1 + an). Since for |z| 6 1/2 we have |Log(1 + z)| 6 2|z|,we can conclude that the series

defining BN absolutely converges. If B := limBN , by the continuity of Log we find

N∏
n=1

(1 + an)→ eB.

The resulting limit is nonzero, unless we have omitted a zero factor in the very beginning.

Definition 3. The infinite product
∏∞
n=1(1 +an) is said to be absolutely convergent iff

∑
Log(1 +an) is absolutely

convergent.

Proposition 4. The product
∏∞
n=1(1 + an) is absolutely convergent iff

∑
|an| converges.

Proof. In either case we necessarily have an→ 0. Hence for n large enough we have

1
2
|an| < |Log(1 + an)| < 3

2
|an|.

Therefore ∑
|an| converges ⇐⇒

∑
Log(1 + an) converges absolutely .

Weierstrass factorization theorem

If f (z) is a nowhere zero entire function, then there is a well-defined logarithm of f (z), i.e., an entire function
g(z) such that

eg(z) = f (z).
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More generally, if f (z) has finitely many zeros1 {ak}Nk=1 away from the origin, then we can factor f (z) as

f (z) = zMeg(z)
N∏
k=1

(
1− z

ak

)
(1)

where g(z) is an entire function. Today we will address the following question:

Question. To what extent can we generalize (1) if f (z) has infinitely many zeros in C?

From now on we assume that f (z) has infinitely many zeros {ak} apart from 0. If product
∏∞
k=1

(
1− z

ak

)
con-

verges uniformly on compact subsets of C, then it defines an entire function with zeros only at {ak}. Therefore,
we can write

f (z)∏∞
k=1

(
1− z

ak

) = zMeg(z)

where M is the order of zero of f (z) at z = 0 and g(z) is some entire function. Equivalently

f (z) = zMeg(z)
∞∏
k=1

(
1− z

ak

)
.

To ensure that the product
∏∞
k=1

(
1− z

ak

)
uniformly converges on every compact set it is enough to assume that

the series
∑ 1
|ak |

converges. Indeed, on every disk BR(0) for k large enough we have

| log(1− z/ak)| < R/ |ak |,

so the sum of logarithms absolutely converges.

To find factorization for f (z) in general, we have to modify factors of infinite product to make it absolutely
convergent. This can be done by a trick similar to the one used in the proof of Mittag-Leffler theorem.

Theorem 5. There exists an entire function with arbitrarily prescribed zeros {ak}, as long as ak →∞ if the numbers
of zeros is infinite. Moreover, every entire function with zeros exactly at {ak} can be written as

f (z) = zMeg(z)
∞∏
k=1

(
1− z

ak

)
e
z
ak

+ 1
2

(
z
ak

)2
+···+ 1

Nk

(
z
ak

)Nk
.

where the product is taken over all ak , 0, {Nk} are integers and g(z) is an entire function.

Proof. We plan to show that there exists a sequence of polynomials qk(z) such that the product

∞∏
k=1

(
1− z

ak

)
eqk(z)

uniformly converges on compact sets.

We will find polynomials such that the infinite sum

∞∑
k=1

(Log(1− z/ak) + pk(z)) :=
∞∑
k=1

ψk(z).

uniformly converges on the compact sets. Given z ∈ BR(0), for a fixed R the principle branch of logarithm is
well-defined for k large enough, since ak →∞.

As for the proof of Mittag-Leffler theorem, we will choose −pk(z) to be the initial segment of the Taylor’s series
of Log(1− z/ak). Namely, as long as |z/ak | < 1, we have

Log
(
1− z

ak

)
= − z

ak
− 1

2

(
z
ak

)2

− · · · − 1
Nk

(
z
ak

)Nk
+ψk(z),

where Nk ∈N to be chosen later.

1If ai is a zero of order ni , then we assume that ai appears exactly ni times in the sequence {ak }.
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As before, for z ∈ BR(0) we have an estimate for the remainder term in the Taylor’s formula:

ψk(z) = − 1
Nk + 1

(
z
ak

)Nk+1

− 1
Nk + 2

(
z
ak

)Nk+2

− . . .

so

|ψk(z)| 6
1

Nk + 1

(
R
|ak |

)Nk+1 1

1− R
|ak |
.

Now we choose {Nk} such that the infinite series∑ 1
Nk + 1

(
R
|ak |

)Nk+1

converges, e.g., by taking Nk = k. Then the infinite product

h(z) :=
∞∏
k=1

(
1− z

ak

)
eqk(z)

with

qk(z) =
z
ak

+
1
2

(
z
ak

)2

+ · · ·+ 1
Nk

(
z
ak

)Nk
converges on compact sets and defines an entire function with zeros at ak .

Hence if f (z) is any other function with the same zeros (and multiplicities) besides z = 0, then

f (z) = zMeg(z)h(z).

Corollary 6. Any meromorphic function in C is a quotient of two holomorphic functions.

Proof. Assume that function f (z) is meromorphic with poles at {ζk}. Construct a holomorphic function h(z)
with zeros at {ζk} and the same orders as the orders of poles of f (z). Then

g(z) := f (z)h(z)

is holomorphic in entire plane C, so

f (z) =
g(z)
h(z)

.

Example 7. Consider a function f (z) = sinπz. It has zeros of order 1 at all integer numbers. It is not hard to
check (see homework) that the product ∏

n,0

(
1− z

n

)
ez/n

is uniformly convergent on compact sets. Therefore,

sinπz = zeg(z)
∏
n,0

(
1− z

n

)
ez/n

for some entire function g(z).

Taking logarithmic derivatives of both sides, we find

πcotπz =
1
z

+ g ′(z) +
∑
n,0

( 1
z −n

+
1
n

)
.

From the previous class we know that g ′(z) = 0, so g(z) = const. It remains to use the fact that sin(πz)/z→ 0 as
z→ 0 to conclude that

sinπz = πz
∏
n,0

(
1− z

n

)
ez/n = πz

∏
z∈N

(
1− z

2

n2

)
,

where in the last identity we paired together factors corresponding to n and −n.
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Genus and order of entire function

It is often possible to choose powers Nk in the product

∞∏
k=1

(
1− z

ak

)
eqk(z), qk(z) =

z
ak

+
1
2

(
z
ak

)2

+ · · ·+ 1
Nk

(
z
ak

)Nk
to be constant Nk = h for all k. From the proof of Weiestrass theorem, we saw that in this case the series

∑ 1
h+ 1

(
R
|ak |

)h+1

must be convergent for any R, that is
∑

1/ |ak |h+1 <∞. The smallest h for each it holds is called the genus of the
product

∞∏
k=1

(
1− z

ak

)
eqk(z)

and the product is called the canonical product.

Definition 8. If function f (z) can be represented as

f (z) = zMeg(z)
∞∏
k=1

(
1− z

ak

)
eqk(z).

where g(z) and each qk(z) are polynomials of degree 6 h, and h is the smallest number for each such expression
is possible, then h is called the genus of f (z).

Example 9. From the infinite product for sinπz we see that is has genus 1. Any polynomial has genus zero.

Informally, the genus of canonical product controls how quickly its zeros escape to infinity.

Denote by M(r) the maximum of |f (z)| on {|z| = R}.

Definition 10. The order of an entire function f (z) is defined as

λ := limsup
r→∞

loglogM(r)
logr

.

Equivalently it is the smallest number such that

M(R) 6 eR
λ+ε

for all ε > 0 and all R sufficiently large.

The genus and order of an entire function are closely related to each other. We leave the following theorem
without a proof.

Theorem 11 (Hadamard Factorization Theorem). The genus and order of an entire function satisfy

h 6 λ 6 h+ 1.

Roughly speaking, Hadamard theorem provide control of the growth rate of |f (z)| in terms of the growth of
the number of zeros of f (z) in BR(0).


