Lecture 18

Special functions

Gamma function

Euler's Gamma function $\Gamma(z)$ is one of the key special meromorphic functions in complex analysis. Its significance is supported by many applications combinatorics, number theory, differential equations, probability, and many other areas.

Theorem 1. There exists a unique function $\Gamma(s)$ of a complex variable $s \in \mathbb{C}$ such that

1. $\Gamma(s)$ is meromorphic in \mathbb{C};
2. $\Gamma(n+1)=n!$ for $n \in \mathbb{N}$;
3. $\Gamma(1 / 2)=\sqrt{\pi}$;
4. $\Gamma(s)$ has integral representation:

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1} d x \quad(\operatorname{Re}(s)>0)
$$

5. $\Gamma(s)$ has hybrid integral representation

$$
\Gamma(s)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+s)}+\int_{1}^{\infty} e^{-x} x^{s-1} d x \quad(s \in \mathbb{C})
$$

6. $\Gamma(s)^{-1}$ has infinite product representation:

$$
\Gamma(s)^{-1}=s e^{\gamma s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n} \quad(s \in \mathbb{C})
$$

7. $\Gamma(s)$ is the limit of finite products

$$
\Gamma(s)=\lim _{n \rightarrow \infty} \frac{n!n^{s}}{s(s+1) \ldots(s+n)} \quad(s \in \mathbb{C}) ;
$$

8. $\Gamma(s)$ has no zeros;
9. $\Gamma(s)$ has simple poles at $s=0,-1,-2, \ldots$ with $\operatorname{res}_{-n}(\Gamma)=\frac{(-1)^{n}}{n!}$;
10. $\Gamma(s)$ satisfies functional equation

$$
\Gamma(s+1)=s \Gamma(s) \quad(s \in \mathbb{C}) ;
$$

11. $\Gamma(s)$ satisfies reflection formula

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)} \quad(s \in \mathbb{C})
$$

We will prove most of the above properties. The remaining ones are left as an exercise.
Proof. Definition for $\operatorname{Re}(s)>0$ (integral representation).
We start with the definition of $\Gamma(s)$ for $\mathfrak{R e}(s)>0$ and deduce from it analytic continuation of $\Gamma(s)$ to a meromorphic function in the entire \mathbb{C} and all of its properties.

$$
\begin{equation*}
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1} d x \tag{1}
\end{equation*}
$$

First, note that this integral converges for $s \in \mathbb{R}, s>0$ since near $x=0$ function x^{s-1} is integrable, and for large x the integrand has exponential decay.

To prove that (1) defines an analytic function for all $\mathfrak{R e}(s)>1$ we argue as follows. For every n there is a holomorphic function

$$
F_{n}(s):=\int_{1 / n}^{n} e^{-x} x^{s-1} d x
$$

and in every $\operatorname{strip}\{\delta<\mathfrak{R e}(s)<M\}$ with $s:=\sigma+\boldsymbol{i t}$ we have

$$
\left|\Gamma(s)-F_{n}(s)\right| \leqslant \int_{0}^{1 / n} e^{-x} x^{\sigma-1} d x+\int_{n}^{\infty} e^{-x} x^{\sigma-1} d x<\frac{(1 / n)^{\delta}}{\delta}+C(M) e^{-n / 2}
$$

which uniformly goes to 0 as $n \rightarrow \infty$.
Functional equation for $\mathfrak{k e}(s)>0$.
Lemma 2. For $\mathfrak{R e}(s)>0$

$$
\Gamma(s+1)=s \Gamma(s) .
$$

In particular, $\Gamma(n+1)=n!, n \in \mathbb{Z}$.
Proof of Lemma. We can integrate by parts:

$$
\int_{1 / n}^{n} \frac{d}{d x}\left(e^{-x} x^{s}\right) d x=-\int_{1 / n}^{n} e^{-x} x^{s} d x+s \int_{1 / n}^{n} e^{-x} x^{s-1} d x
$$

It remains to let $n \rightarrow \infty$ and note that the left-hand side goes to zero, since $e^{-x} x^{s}$ goes to zero as $x \rightarrow 0$ or $+\infty$.
Finally $\Gamma(1)=\int_{0}^{\infty} e^{-x} d x=1=0$! and the rest follows by induction.

Analytic continuation.

We can use functional equation $\Gamma(s+1)=s \Gamma(s)$ to continue $\Gamma(s)$ to a meromorphic function of $s \in \mathbb{C}$. Specifically, we first define a function

$$
F_{1}(s)=\frac{\Gamma(s+1)}{s}
$$

This is a meromorphic function of $s, \operatorname{Re}(s)>-1$ with a single pole at $s=0$. Moreover, it coincides with $\Gamma(s)$ for all $s>0$ due to the functional equation.

We can iterate this process and define

$$
F_{m}(s):=\frac{\Gamma(s+m)}{s(s+1) \ldots(s+m-1)}
$$

This function is meromorphic for $\mathfrak{k e}(s)>-m$, coincides with $\Gamma(s)$ (and all previously defined $\left.F_{i}(s)\right)$ on its domain and has simple poles at $s=0,-1, \ldots,-(m-1)$.
Eventually, we extend $\Gamma(s)$ to a meromorphic function in the entire plane.
Remark 3. The extension of $\Gamma(s)$ to \mathbb{C} still satisfies the functional equation $\Gamma(s+1)=s \Gamma(s)$.

Hybrid integral representation.

The reason why the integral representation (1) works only for $\mathfrak{R e}(s)>0$ and all s is that the integral improper integral diverges near $x=0$. To isolate this issue we can rewrite the definition of $\Gamma(s)$ as follows:

$$
\Gamma(s)=\int_{0}^{1} e^{-x} x^{s-1} d x+\int_{1}^{\infty} e^{-x} x^{s-1} d x
$$

The latter integral defines an entire analytic function. Expanding e^{-x} we also rewrite the former integral as

$$
\int_{0}^{1} e^{-x} x^{s-1} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+s)}
$$

Therefore

$$
\Gamma(s)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+s)}+\int_{1}^{\infty} e^{-x} x^{s-1} d x
$$

The advantage of this presentation is that it defines a meromorphic function for all $s \in \mathbb{C}$.
Finite product limit

Lemma 4. For $\operatorname{Re}(s)>0$ we have

$$
\Gamma(s)=\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} x^{s-1} d x
$$

Proof of lemma. The integrand monotonically increases to e^{-x} as $n \rightarrow \infty$ therefore we have the result by dominated converges.

It is an elementary exercise to prove that

$$
\int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} x^{s-1} d x=n^{s} \int_{0}^{1}(1-t)^{n} t^{s-1} d t=\frac{n!n^{s}}{s(s+1) \ldots(s+n)}
$$

Infinite product representation for $\Gamma(s)^{-1}$ with $\mathfrak{K e}(s)>0$

$$
\Gamma^{-1}(s)=\lim _{n \rightarrow \infty} \frac{s(s+1) \ldots(s+n)}{n!n^{s}}=s \lim _{n \rightarrow \infty} e^{-s \log n}\left(1+\frac{s}{1}\right) \cdots\left(1+\frac{s}{n}\right)=s e^{\gamma s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n}
$$

where $\gamma:=\lim _{n \rightarrow \infty}(1+1 / 2+\cdots+1 / n-\log n)$ is the Euler-Mascheroni constant.
The above representation is well-defined in the entire \mathbb{C}. In fact, this is the Weierstrass factorization of the entire function $\Gamma(s)^{-1}$. In particular, we see that $\Gamma(s)^{-1}$ has genus 1 .

Volume of an n-dimensional ball

The values of the Gamma function at integers and half-integers naturally occur in the formula for the volumes of n-dimensional balls and spheres.
Theorem 5. Let $A_{n-1}(r)$ be a surface area of the ($n-1$)-dimensional sphere: $S^{n-1}(r)=\left\{\mathbf{x} \in \mathbb{R}^{n} \| \mathbf{x} \mid=r\right\}$ and $V_{n}(r)$ the volume of the n-dimensional ball of radius r. Then

$$
\begin{gathered}
A_{n-1}(r)=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} r^{n-1} . \\
V_{n}(r)=\frac{r}{n} A_{n-1}(r)=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)} r^{n} .
\end{gathered}
$$

Proof. Consider function $f(\mathbf{x})=\exp \left(-|\mathbf{x}|^{2} / 2\right)$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Then

$$
\int_{\mathbb{R}^{n}} f(\mathbf{x}) d \mathbf{x}=\prod_{k=1}^{n}\left(\int_{-\infty}^{+\infty} e^{-x_{k}^{2} / 2} d x_{k}\right)=(\sqrt{2 \pi})^{n}
$$

On the other hand, since $f(\mathbf{x})$ is rotationally symmetric, we find:

$$
\int_{\mathbb{R}^{n}} f(\mathbf{x}) d \mathbf{x}=\int_{0}^{+\infty} e^{-r^{2} / 2} A_{n-1}(r) d r
$$

Now, due to scaling properties, $A_{n-1}(r)=A(1) r^{n-1}$. Hence using substitution $t=r^{2} / 2$ we can compute

$$
\int_{\mathbb{R}^{n}} f(\mathbf{x}) d \mathbf{x}=A_{n-1}(1) \int_{0}^{+\infty} e^{-r^{2} / 2} r^{n-1} d r=2^{n / 2-1} A_{n-1}(1) \int_{0}^{\infty} e^{-t} t^{n / 2-1} d t=2^{n / 2-1} A_{n-1}(1) \Gamma(n / 2)
$$

Comparing values of $\int_{\mathbb{R}^{n}} f(\mathbf{x}) d \mathbf{x}$ computed in two different ways, we find

$$
A_{n-1}(1)=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}
$$

Finally, for the volume we have:

$$
V_{n}(r)=\int_{0}^{r} A_{n-1}(r) d r=A(1) \int_{0}^{r} r^{n-1} d r=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)} r^{n}
$$

Remark 6. Using the special value $\Gamma(1 / 2)=\sqrt{\pi}$, the above formulas could be rewritten in a slightly different manner for odd n.
We also observe something remarkable. The volumes of the unit balls in \mathbb{R}^{n} increase for $n \leqslant 5$, but then decrease to 0 as $n \rightarrow \infty$.

