
Yury Ustinovskiy Complex Variables MATH-GA.2451-001 Fall 2019

Lecture 18

Special functions

Gamma function

Euler’s Gamma function Γ (z) is one of the key special meromorphic functions in complex analysis. Its signif-
icance is supported by many applications combinatorics, number theory, differential equations, probability,
and many other areas.

Theorem 1. There exists a unique function Γ (s) of a complex variable s ∈C such that

1. Γ (s) is meromorphic in C;

2. Γ (n+ 1) = n! for n ∈N;

3. Γ (1/2) =
√
π;

4. Γ (s) has integral representation:

Γ (s) =
∫ ∞

0
e−xxs−1dx (<(s) > 0);

5. Γ (s) has hybrid integral representation

Γ (s) =
∞∑
n=0

(−1)n

n!(n+ s)
+
∫ ∞

1
e−xxs−1dx (s ∈C);

6. Γ (s)−1 has infinite product representation:

Γ (s)−1 = seγs
∞∏
n=1

(
1 +

s
n

)
e−s/n (s ∈C);

7. Γ (s) is the limit of finite products

Γ (s) = lim
n→∞

n!ns

s(s+ 1) . . . (s+n)
(s ∈C); ;

8. Γ (s) has no zeros;

9. Γ (s) has simple poles at s = 0,−1,−2, . . . with res−n(Γ ) = (−1)n

n! ;

10. Γ (s) satisfies functional equation
Γ (s+ 1) = sΓ (s) (s ∈C); ;

11. Γ (s) satisfies reflection formula

Γ (s)Γ (1− s) =
π

sin(πs)
(s ∈C);

We will prove most of the above properties. The remaining ones are left as an exercise.

Proof. Definition for<(s) > 0 (integral representation).

We start with the definition of Γ (s) for<(s) > 0 and deduce from it analytic continuation of Γ (s) to a meromor-
phic function in the entire C and all of its properties.

Γ (s) =
∫ ∞

0
e−xxs−1dx. (1)

First, note that this integral converges for s ∈ R, s > 0 since near x = 0 function xs−1 is integrable, and for large
x the integrand has exponential decay.
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To prove that (1) defines an analytic function for all <(s) > 1 we argue as follows. For every n there is a
holomorphic function

Fn(s) :=
∫ n

1/n
e−xxs−1dx

and in every strip {δ <<(s) <M} with s := σ + iiit we have

|Γ (s)−Fn(s)| 6
∫ 1/n

0
e−xxσ−1dx+

∫ ∞
n
e−xxσ−1dx <

(1/n)δ

δ
+C(M)e−n/2

which uniformly goes to 0 as n→∞.

Functional equation for<(s) > 0.

Lemma 2. For<(s) > 0
Γ (s+ 1) = sΓ (s).

In particular, Γ (n+ 1) = n!, n ∈Z.

Proof of Lemma. We can integrate by parts:∫ n

1/n

d
dx

(e−xxs)dx = −
∫ n

1/n
e−xxsdx+ s

∫ n

1/n
e−xxs−1dx.

It remains to let n→∞ and note that the left-hand side goes to zero, since e−xxs goes to zero as x→ 0 or +∞.

Finally Γ (1) =
∫∞

0 e−xdx = 1 = 0! and the rest follows by induction.

Analytic continuation.

We can use functional equation Γ (s+1) = sΓ (s) to continue Γ (s) to a meromorphic function of s ∈C. Specifically,
we first define a function

F1(s) =
Γ (s+ 1)
s

.

This is a meromorphic function of s,<(s) > −1 with a single pole at s = 0. Moreover, it coincides with Γ (s) for
all s > 0 due to the functional equation.

We can iterate this process and define

Fm(s) :=
Γ (s+m)

s(s+ 1) . . . (s+m− 1)
.

This function is meromorphic for <(s) > −m, coincides with Γ (s) (and all previously defined Fi(s)) on its
domain and has simple poles at s = 0,−1, . . . ,−(m− 1).

Eventually, we extend Γ (s) to a meromorphic function in the entire plane.

Remark 3. The extension of Γ (s) to C still satisfies the functional equation Γ (s+ 1) = sΓ (s).

Hybrid integral representation.

The reason why the integral representation (1) works only for<(s) > 0 and all s is that the integral improper
integral diverges near x = 0. To isolate this issue we can rewrite the definition of Γ (s) as follows:

Γ (s) =
∫ 1

0
e−xxs−1dx+

∫ ∞
1
e−xxs−1dx

The latter integral defines an entire analytic function. Expanding e−x we also rewrite the former integral as∫ 1

0
e−xxs−1dx =

∞∑
n=0

(−1)n

n!(n+ s)

Therefore

Γ (s) =
∞∑
n=0

(−1)n

n!(n+ s)
+
∫ ∞

1
e−xxs−1dx.

The advantage of this presentation is that it defines a meromorphic function for all s ∈C.

Finite product limit
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Lemma 4. For<(s) > 0 we have

Γ (s) = lim
n→∞

∫ n

0

(
1− x

n

)n
xs−1dx.

Proof of lemma. The integrand monotonically increases to e−x as n→∞ therefore we have the result by domi-
nated converges.

It is an elementary exercise to prove that∫ n

0

(
1− x

n

)n
xs−1dx = ns

∫ 1

0
(1− t)nts−1dt =

n!ns

s(s+ 1) . . . (s+n)
.

Infinite product representation for Γ (s)−1 with<(s) > 0

Γ −1(s) = lim
n→∞

s(s+ 1) . . . (s+n)
n!ns

= s lim
n→∞

e−s logn
(
1 +

s
1

)
· · ·

(
1 +

s
n

)
= seγs

∞∏
n=1

(
1 +

s
n

)
e−s/n,

where γ := limn→∞(1 + 1/2 + · · ·+ 1/n− logn) is the Euler-Mascheroni constant.

The above representation is well-defined in the entire C. In fact, this is the Weierstrass factorization of the
entire function Γ (s)−1. In particular, we see that Γ (s)−1 has genus 1.

Volume of an n-dimensional ball

The values of the Gamma function at integers and half-integers naturally occur in the formula for the volumes
of n-dimensional balls and spheres.

Theorem 5. Let An−1(r) be a surface area of the (n−1)-dimensional sphere: Sn−1(r) = {x ∈Rn | |x| = r} and Vn(r) the
volume of the n-dimensional ball of radius r. Then

An−1(r) =
2πn/2

Γ (n/2)
rn−1.

Vn(r) =
r
n
An−1(r) =

πn/2

Γ (n/2 + 1)
rn.

Proof. Consider function f (x) = exp(−|x|2/2), where x = (x1, . . . ,xn) ∈Rn. Then∫
R
n
f (x)dx =

n∏
k=1

(∫ +∞

−∞
e−x

2
k /2dxk

)
= (
√

2π)n.

On the other hand, since f (x) is rotationally symmetric, we find:∫
R
n
f (x)dx =

∫ +∞

0
e−r

2/2An−1(r)dr

Now, due to scaling properties, An−1(r) = A(1)rn−1. Hence using substitution t = r2/2 we can compute∫
R
n
f (x)dx = An−1(1)

∫ +∞

0
e−r

2/2rn−1dr = 2n/2−1An−1(1)
∫ ∞

0
e−ttn/2−1dt = 2n/2−1An−1(1)Γ (n/2).

Comparing values of
∫
R
n f (x)dx computed in two different ways, we find

An−1(1) =
2πn/2

Γ (n/2)
.

Finally, for the volume we have:

Vn(r) =
∫ r

0
An−1(r)dr = A(1)

∫ r

0
rn−1dr =

πn/2

Γ (n/2 + 1)
rn.

Remark 6. Using the special value Γ (1/2) =
√
π, the above formulas could be rewritten in a slightly different

manner for odd n.

We also observe something remarkable. The volumes of the unit balls in R
n increase for n 6 5, but then

decrease to 0 as n→∞.


