Lecture 18

Special functions

Gamma function

Euler's Gamma function $\Gamma(z)$ is one of the key *special* meromorphic functions in complex analysis. Its significance is supported by many applications combinatorics, number theory, differential equations, probability, and many other areas.

Theorem 1. There exists a unique function $\Gamma(s)$ of a complex variable $s \in \mathbb{C}$ such that

- 1. $\Gamma(s)$ is meromorphic in \mathbb{C} ;
- 2. $\Gamma(n+1) = n!$ for $n \in \mathbb{N}$;
- 3. $\Gamma(1/2) = \sqrt{\pi};$
- 4. $\Gamma(s)$ has integral representation:

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx \quad (\operatorname{Re}(s) > 0);$$

5. $\Gamma(s)$ has hybrid integral representation

$$\Gamma(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+s)} + \int_1^{\infty} e^{-x} x^{s-1} dx \quad (s \in \mathbb{C});$$

6. $\Gamma(s)^{-1}$ has infinite product representation:

$$\Gamma(s)^{-1} = s e^{\gamma s} \prod_{n=1}^{\infty} \left(1 + \frac{s}{n} \right) e^{-s/n} \quad (s \in \mathbb{C});$$

7. $\Gamma(s)$ is the limit of finite products

$$\Gamma(s) = \lim_{n \to \infty} \frac{n! n^s}{s(s+1) \dots (s+n)} \quad (s \in \mathbb{C});;$$

- 8. $\Gamma(s)$ has no zeros;
- 9. $\Gamma(s)$ has simple **poles** at s = 0, -1, -2, ... with $\operatorname{res}_{-n}(\Gamma) = \frac{(-1)^n}{n!}$;
- 10. $\Gamma(s)$ satisfies functional equation

$$\Gamma(s+1)=s\Gamma(s)\quad (s\in\mathbb{C});;$$

11. $\Gamma(s)$ satisfies reflection formula

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$
 ($s \in \mathbb{C}$);

We will prove most of the above properties. The remaining ones are left as an exercise.

Proof. Definition for $\Re \varepsilon(s) > 0$ (integral representation).

We start with the definition of $\Gamma(s)$ for $\Re \varepsilon(s) > 0$ and deduce from it *analytic continuation* of $\Gamma(s)$ to a meromorphic function in the entire \mathbb{C} and all of its properties.

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx.$$
⁽¹⁾

First, note that this integral converges for $s \in \mathbb{R}$, s > 0 since near x = 0 function x^{s-1} is integrable, and for large x the integrand has exponential decay.

To prove that (1) defines an analytic function for all $\Re e(s) > 1$ we argue as follows. For every *n* there is a holomorphic function

$$F_n(s) := \int_{1/n}^n e^{-x} x^{s-1} dx$$

and in every strip $\{\delta < \Re \varepsilon(s) < M\}$ with $s := \sigma + it$ we have

$$|\Gamma(s) - F_n(s)| \leq \int_0^{1/n} e^{-x} x^{\sigma - 1} dx + \int_n^\infty e^{-x} x^{\sigma - 1} dx < \frac{(1/n)^{\delta}}{\delta} + C(M) e^{-n/2}$$

which uniformly goes to 0 as $n \to \infty$.

Functional equation for $\Re e(s) > 0$ **.**

Lemma 2. For $\Re \mathfrak{e}(s) > 0$

$$\Gamma(s+1) = s\Gamma(s).$$

In particular, $\Gamma(n+1) = n!$, $n \in \mathbb{Z}$.

Proof of Lemma. We can integrate by parts:

$$\int_{1/n}^{n} \frac{d}{dx} (e^{-x} x^{s}) dx = -\int_{1/n}^{n} e^{-x} x^{s} dx + s \int_{1/n}^{n} e^{-x} x^{s-1} dx.$$

It remains to let $n \to \infty$ and note that the left-hand side goes to zero, since $e^{-x}x^s$ goes to zero as $x \to 0$ or $+\infty$. Finally $\Gamma(1) = \int_0^\infty e^{-x} dx = 1 = 0!$ and the rest follows by induction.

Analytic continuation.

We can use functional equation $\Gamma(s+1) = s\Gamma(s)$ to continue $\Gamma(s)$ to a meromorphic function of $s \in \mathbb{C}$. Specifically, we first define a function

$$F_1(s) = \frac{\Gamma(s+1)}{s}.$$

This is a meromorphic function of *s*, $\Re e(s) > -1$ with a single pole at s = 0. Moreover, it coincides with $\Gamma(s)$ for all s > 0 due to the functional equation.

We can iterate this process and define

$$F_m(s) := \frac{\Gamma(s+m)}{s(s+1)\dots(s+m-1)}$$

This function is meromorphic for $\Re e(s) > -m$, coincides with $\Gamma(s)$ (and all previously defined $F_i(s)$) on its domain and has simple poles at s = 0, -1, ..., -(m-1).

Eventually, we extend $\Gamma(s)$ to a meromorphic function in the entire plane.

Remark 3. The extension of $\Gamma(s)$ to \mathbb{C} still satisfies the functional equation $\Gamma(s+1) = s\Gamma(s)$.

Hybrid integral representation.

The reason why the integral representation (1) works only for $\Re e(s) > 0$ and all *s* is that the integral improper integral diverges near x = 0. To *isolate* this issue we can rewrite the definition of $\Gamma(s)$ as follows:

$$\Gamma(s) = \int_0^1 e^{-x} x^{s-1} dx + \int_1^\infty e^{-x} x^{s-1} dx$$

The latter integral defines an entire analytic function. Expanding e^{-x} we also rewrite the former integral as

$$\int_0^1 e^{-x} x^{s-1} dx = \sum_{n=0}^\infty \frac{(-1)^n}{n!(n+s)}$$

Therefore

$$\Gamma(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+s)} + \int_1^{\infty} e^{-x} x^{s-1} dx.$$

The advantage of this presentation is that it defines a meromorphic function for all $s \in \mathbb{C}$. Finite product limit **Lemma 4.** For $\Re \varepsilon(s) > 0$ we have

$$\Gamma(s) = \lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n}\right)^n x^{s-1} dx.$$

Proof of lemma. The integrand monotonically increases to e^{-x} as $n \to \infty$ therefore we have the result by dominated converges.

It is an elementary exercise to prove that

$$\int_0^n \left(1 - \frac{x}{n}\right)^n x^{s-1} dx = n^s \int_0^1 (1 - t)^n t^{s-1} dt = \frac{n! n^s}{s(s+1) \dots (s+n)}$$

Infinite product representation for $\Gamma(s)^{-1}$ **with** $\Re \varepsilon(s) > 0$

$$\Gamma^{-1}(s) = \lim_{n \to \infty} \frac{s(s+1)\dots(s+n)}{n!n^s} = s \lim_{n \to \infty} e^{-s\log n} \left(1 + \frac{s}{1}\right) \cdots \left(1 + \frac{s}{n}\right) = s e^{\gamma s} \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right) e^{-s/n},$$

where $\gamma := \lim_{n \to \infty} (1 + 1/2 + \dots + 1/n - \log n)$ is the Euler-Mascheroni constant.

The above representation is well-defined in the entire \mathbb{C} . In fact, this is the Weierstrass factorization of the entire function $\Gamma(s)^{-1}$. In particular, we see that $\Gamma(s)^{-1}$ has genus 1.

Volume of an *n*-dimensional ball

The values of the Gamma function at integers and half-integers naturally occur in the formula for the volumes of *n*-dimensional balls and spheres.

Theorem 5. Let $A_{n-1}(r)$ be a surface area of the (n-1)-dimensional sphere: $S^{n-1}(r) = {\mathbf{x} \in \mathbb{R}^n | |\mathbf{x}| = r}$ and $V_n(r)$ the volume of the n-dimensional ball of radius r. Then

$$A_{n-1}(r) = \frac{2\pi^{n/2}}{\Gamma(n/2)}r^{n-1}.$$
$$V_n(r) = \frac{r}{n}A_{n-1}(r) = \frac{\pi^{n/2}}{\Gamma(n/2+1)}r^n.$$

Proof. Consider function $f(\mathbf{x}) = \exp(-|\mathbf{x}|^2/2)$, where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$. Then

$$\int_{\mathbb{R}^n} f(\mathbf{x}) d\mathbf{x} = \prod_{k=1}^n \left(\int_{-\infty}^{+\infty} e^{-x_k^2/2} dx_k \right) = (\sqrt{2\pi})^n.$$

On the other hand, since $f(\mathbf{x})$ is rotationally symmetric, we find:

$$\int_{\mathbb{R}^n} f(\mathbf{x}) d\mathbf{x} = \int_0^{+\infty} e^{-r^2/2} A_{n-1}(r) dr$$

Now, due to scaling properties, $A_{n-1}(r) = A(1)r^{n-1}$. Hence using substitution $t = r^2/2$ we can compute

$$\int_{\mathbb{R}^n} f(\mathbf{x}) d\mathbf{x} = A_{n-1}(1) \int_0^{+\infty} e^{-r^2/2} r^{n-1} dr = 2^{n/2-1} A_{n-1}(1) \int_0^{\infty} e^{-t} t^{n/2-1} dt = 2^{n/2-1} A_{n-1}(1) \Gamma(n/2).$$

Comparing values of $\int_{\mathbb{R}^n} f(\mathbf{x}) d\mathbf{x}$ computed in two different ways, we find

$$A_{n-1}(1) = \frac{2\pi^{n/2}}{\Gamma(n/2)}$$

Finally, for the volume we have:

$$V_n(r) = \int_0^r A_{n-1}(r)dr = A(1)\int_0^r r^{n-1}dr = \frac{\pi^{n/2}}{\Gamma(n/2+1)}r^n.$$

Remark 6. Using the special value $\Gamma(1/2) = \sqrt{\pi}$, the above formulas could be rewritten in a slightly different manner for odd *n*.

We also observe something remarkable. The volumes of the unit balls in \mathbb{R}^n increase for $n \leq 5$, but then decrease to 0 as $n \to \infty$.