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Lecture 18

Special functions

Gamma function

Euler’s Gamma function I'(z) is one of the key special meromorphic functions in complex analysis. Its signif-
icance is supported by many applications combinatorics, number theory, differential equations, probability,
and many other areas.

Theorem 1. There exists a unique function I'(s) of a complex variable s € C such that

1. I'(s) is meromorphic in C;

2. T(n+1)=n!fornelN;

3. T(1/2) = Vr;

4. I'(s) has integral representation:

I'(s)= J:o e xldx  (Re(s)>0);

5. I'(s) has hybrid integral representation

C (_1)n « —X ,.5— .
r(s):Zn'(n+s)+J; e*xldx (seQ);

n=0

6. T(s)™! has infinite product representation:

7. T(s) is the limit of finite products

I(s) = lim

n—oo s(s+1)...(s+n) (s€ )

8. T(s) has no zeros;

9. I'(s) has simple poles at s =0,-1,-2,... withres_,(I') =

10. I'(s) satisfies functional equation
[(s+1)=sl(s) (seC);;

11. T(s) satisfies reflection formula

T(s)[(1—s) = sin?m) (s€C);

We will prove most of the above properties. The remaining ones are left as an exercise.

Proof. Definition for Re(s) > 0 (integral representation).

We start with the definition of I'(s) for Re(s) > 0 and deduce from it analytic continuation of I'(s) to a meromor-
phic function in the entire C and all of its properties.

I'(s) = J:O e x"ldx. (1)

First, note that this integral converges for s € IR,s > 0 since near x = 0 function x5!

x the integrand has exponential decay.

is integrable, and for large
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To prove that (1) defines an analytic function for all Re(s) > 1 we argue as follows. For every n there is a
holomorphic function

n
F,(s):= J e *xldx
1

/n
and in every strip {6 < Re(s) < M} with s := o +it we have

1/n (1/ )6

IT(s) = F,(s)| < J e x" tdx + f e *x"ldx < — C(M)e?
n

0
which uniformly goes to 0 as n — co.
Functional equation for Re(s) > 0.

Lemma 2. For Re(s) >0
[(s+1)=sI(s).

In particular, '(n+1)=n!, ne Z.

Proof of Lemma. We can integrate by parts:

n d n n
f —(e*x%)dx = —J- e_xxsdx+sj e *xdx.
1/n dx 1/n 1/n

It remains to let 7 — co and note that the left-hand side goes to zero, since e™*x* goes to zero as x — 0 or +oco.

Finally I'(1) = fgo e *dx =1 =0! and the rest follows by induction. O

Analytic continuation.

We can use functional equation I'(s+1) = sI'(s) to continue I'(s) to a meromorphic function of s € C. Specifically,

we first define a function Mo 1)
s+
Fl (S) = S .

This is a meromorphic function of s, Re(s) > —1 with a single pole at s = 0. Moreover, it coincides with I'(s) for
all s > 0 due to the functional equation.

We can iterate this process and define

. [(s+m)
Enls):= s(s+1)...(s+m—1)

This function is meromorphic for Re(s) > —m, coincides with I'(s) (and all previously defined F;(s)) on its
domain and has simple poles at s =0,-1,...,—(m —1).

Eventually, we extend I'(s) to a meromorphic function in the entire plane.

Remark 3. The extension of I'(s) to C still satisfies the functional equation I'(s + 1) = sI'(s).

Hybrid integral representation.

The reason why the integral representation (1) works only for Re(s) > 0 and all s is that the integral improper
integral diverges near x = 0. To isolate this issue we can rewrite the definition of I'(s) as follows:

1 0
I'(s)= J e x"Vdx + j e xS ldx
0 1

The latter integral defines an entire analytic function. Expanding e~ we also rewrite the former integral as

! -x s—ld _ C (_1)n
0 e X_Zn!(n+s)
0

n=

Therefore

_ . (_1)11 « —x.s—1
r(s)_Zn!(n+s)+£ e x* " dx.

n=0
The advantage of this presentation is that it defines a meromorphic function for all s € C.

Finite product limit
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Lemma 4. For Re(s) > 0 we have
n

X n
I'(s) = lim (1——) xS dx.
0

n—o0 n

Proof of lemma. The integrand monotonically increases to e™ as n — oo therefore we have the result by domi-
nated converges. O

It is an elementary exercise to prove that

n n 1 1475
J (1—5) x51dx:nsf G (S [ SR —
0 n 0 s(s+1)...(s+n)

Infinite product representation for I'(s)~! with Re(s) > 0

+1)...(s+ =
ri(s) = im SEFDestm) o e—slog"(l + 3)---(1 + i) = se”* | |(1 + i)e—S/”,
n—o0 nlns n—o0 1 n 1 n
1=

=

where y :=1lim,_, (1 +1/2+---+1/n—logn) is the Euler-Mascheroni constant.

The above representation is well-defined in the entire C. In fact, this is the Weierstrass factorization of the
entire function I'(s)~!. In particular, we see that I'(s)~! has genus 1. O

Volume of an n-dimensional ball

The values of the Gamma function at integers and half-integers naturally occur in the formula for the volumes
of n-dimensional balls and spheres.

Theorem 5. Let A,,_;(r) be a surface area of the (n—1)-dimensional sphere: S"~!(r) = {x € R" | [x| = r} and V,,(r) the
volume of the n-dimensional ball of radius r. Then
27_(71/2 n-1
A, (1) = I‘(n/2)r .

r 7.[11/2
Vn(r) = ZAn—l (T)

n

TTw2+1)

Proof. Consider function f(x) = exp(—|x|?/2), where x = (xy,...,x,) € R". Then

" f(x)dx = ﬁ(fm e—xi/zdxk) = (V2n)".

k=1 b

On the other hand, since f(x) is rotationally symmetric, we find:

+00
X f(x)dx :L e A, (r)dr

Now, due to scaling properties, A,_;(r) = A(1)r"~!. Hence using substitution t = r?/2 we can compute

+00 ©
. f(x)dx = An_l(l)J e 21y = 2"/21A,,_1(1)_[ et dr = 2"27 AL (1D (n/2).
n 0 0

Comparing values of LR,, f(x)dx computed in two different ways, we find

27"/2
A (1) = ——.
n—l( ) r(n/z)
Finally, for the volume we have:
r r . 7.(11/2
Vu(r)= | A,q(r)dr=AQ1 "ldr =
(0= [ Aaidr=a | o= e

O

Remark 6. Using the special value I'(1/2) = v/it, the above formulas could be rewritten in a slightly different
manner for odd n.

We also observe something remarkable. The volumes of the unit balls in IR” increase for n < 5, but then
decrease to 0 as n — oo.



