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Lecture 19

Zeta function ζ(s)

Definition 1. For s = σ + iiit, σ > 1 define

ζ(s) :=
∞∑
n=1

1
ns

where ns := es logn is defined using the principle branch of the logarithm. For any σ > 1 + δ, δ > 0 we have∣∣∣∣∣ 1
ns

∣∣∣∣∣ < 1
n1+δ

.

Since
∑

1/n1+δ <∞, the power series defining ζ(s) is absolutely and uniformly convergent in any region of the
form {σ > 1 + δ}.
Function ζ(s) is called Riemann zeta function.

Proposition 2 (Euler product formula). For<(s) > 1 Zeta function has infinite product representation

ζ(s) =
∏
p

1

1− 1
ps

(1)

where the product is taken over all positive prime numbers p.

Proof. Consider s in the region<(s) > 1 + δ, δ > 0.

First, we note that the product
∏
p

(
1− 1

ps

)
is uniformly and absolutely convergent, since

∑
|p−s | <

∑
n−1−δ <∞.

Next, if we let p1, . . . ,pN to be first N primes, then

ζ(s)(1− p−s1 ) . . . (1− p−sN ) =
∑
n′

1
(n′)s

where the sum is taken over all n′ such that prime factorization of n′ is free of p1, . . . ,pN . In particular, if N (M)
is large enough, this sum will not include first M natural numbers. In particular

|ζ(s)(1− p−s1 ) . . . (1− p−sN )| <
∞∑

n=M+1

1
n1+δ

.

Taking M large, the latter tail can be made arbitrary small.

Remark 3. Formally (1) is just a reformulation of the Fundamental Theorem of Arithmetics, since

1
1− p−s

=
∑
k

1
pks

and the product of series
∑
k

1
pks

over all primes p after expanding just picks ups every term n−s exactly once.

Corollary 4. Zeta function has no zeros in<(s) > 11.
1Later we will show that ζ(s) can be extended to meromorphic function in C and has no zeros on <(s) = 1. This is a toy version of

Riemann hypothesis.



Yury Ustinovskiy Complex Variables MATH-GA.2451-001 Fall 2019

Analytic continuation of ζ(s)

The first difficulty which we have to overcome is to define analytic continuation of ζ(s) to a larger domain.
First, let us explain how one can extend ζ(s) to a meromorphic function in<(s) > 0.

To do so, we manipulate with the definition of ζ(s) in <(s) > 1 and rewrite it in a way which would make
sense in<(s) > 0.

Lemma 5. For<(s) > 1 we have

ζ(s) =
1
s − 1

−
∫ ∞

1
(x−s − [x]−s)dx

where [x] is the floor (integer part) of a real number x.

Proof. Since for <(s) > 1 + δ all the series and integrals below are absolutely and uniformly convergent, we
have

ζ(s) =
∞∑
n=1

1
ns

=
∞∑
n=1

(∫ n+1

n

dx
xs

+
(

1
ns
−
∫ n+1

n

dx
xs

))

=
∫ ∞

1

dx
xs

+
∞∑
n=1

(
1
ns
−
∫ n+1

n

dx
xs

)
=

1
s − 1

−
∫ ∞

1
(x−s − [x]−s)dx.

The key feature of the above expression is that it makes sense as long as <(s) > 0. Indeed, by mean value
theorem we can bound

|x−s − [x]−s | < |s|x−<(s)−1

which shows that the integral is absolutely and uniformly convergent in any set {<(s) > δ} ∩ {|s| < R}.

Corollary 6. Function ζ(s) has a simple pole at s = 1 with residue 1.

To extend ζ(s) further, we study the product Γ (s)ζ(s).

Proposition 7. For<(s) > 1

Γ (s)ζ(s) =
∫ ∞

0

xs−1

ex − 1
dx.

Proof. Homework exercise.

Theorem 8. For<(s) > 1

ζ(s) = − Γ (1− s)
2πiii

∫
C

(−z)s−1

ez − 1
dz

where C is the contour below.

<

=
2πiii C

Proof. First, we note the poles of the integrand are at 2kπiii, and as as long as the circle does not include these
poles, the integral does not depend on the choice of the circle. Moreover, as the size of the circle goes to 0, the
corresponding integral also goes to zero.

Next, integrals over the two rays are computed using different branches of (−z)s−1. Namely on the upper edge
(−z)s−1 = xs−1e−(s−1)πiii and on the lower edge (−z)s−1 = xs−1e(s−1)πiii .
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Hence, we obtain ∫
C

(−z)s−1

ez − 1
dz =−

∫ ∞
0

xs−1e−(s−1)πiii

ex − 1
dx+

∫ ∞
0

xs−1e(s−1)πiii

ex − 1
dx

=2iii sin(π(s − 1))ζ(s)Γ (s).

Finally, as sin(π(s − 1)) = −sin(π) and Γ (s)Γ (1− s) = π/ sin(πs), we get the stated formula.

The importance of this new representation is that the integral on the right hand side yields an entire function,
i.e., it is holomorphic function of s ∈ C. Therefore, ζ(s) being a product of meromorphic function Γ (1− s) and
an entire function is itself a meromorphic function of s ∈C.

Corollary 9 (Pole of ζ(s)). Function ζ(s) has a unique pole at s = 1.

Proof. Potentially poles of ζ(s) can only occur at poles of Γ (1− s), i.e, 1,2,3, . . . . But we already know that ζ(s)
is holomorphic in<(s) > 1.

Corollary 10 (Values at negative integers). For m ∈N we have

ζ(−2m) = 0, ζ(−2m+ 1) = (−1)m
Bm
2m

,

where Bm are Bernoulli numbers.

Zeros at negative even integers are called trivial zeros of ζ(s).

Proof. From the formula for ζ(s), we have

ζ(−n) = (−1)n
n!

2πiii

∫
C

z−n−1

ez − 1
dz.

It remain to notice that the the integral computes 1/2πiii times the coefficient at zn in Laurent expansion of
1/(ez − 1), which is by one of the homework problems

1
ez − 1

=
1
z
− 1

2
+
∞∑
k=1

Bk
(2k)!

z2k−1.

Reflection formula for ζ(s)

It was discovered by Riemann that the values ζ(s) and ζ(1−s) are related by an explicit equation. This provides
a good control over ζ(s) for <(s) < 0 and the key to understanding zeta function lies in its behavior in the
critical strip 0 6<(s) 6 1.

Theorem 11 (Functional equation).

ζ(s) = 2sπs−1 sin
πs
2
Γ (1− s)ζ(1− s).

Proof. To prove this identity we introduce a contour Cn.

<

=

2πiii

...

2nπiii
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Consider a closed contour Cn −C (where C is the contour introduced above, so that infinite rays “cancel out”).
It has winding number 1 around each of the poles ±2kπiii, k = 1, . . .n of (−z)s−1/(ez − 1). Therefore, by residue
theorem we have

1
2πiii

∫
Cn−C

(−z)s−1

ez − 1
dz =

n∑
k=1

[(−2kπiii)s−1 + (2kπiii)s−1] = 2
n∑
k=1

(2kπ)s−1 sin
πs
2
.

Using an elementary estimate, we find that for<(s) < 0 the integral over Cn goes to 0 as n→∞, therefore

lim
n→∞

∫
Cn−C

(−z)s−1

ez − 1
dz = −

∫
C

(−z)s−1

ez − 1
dz.

Hence as long as<(s) < 0, we conclude

ζ(s)
Γ (1− s)

= 2 · (2π)s−1 sin
πs
2

∞∑
n=1

ns−1

Since this identity holds for<(s) < 0 and both functions are meromorphic in C, it must hold for all s.

Corollary 12 (Values at positive even integers).

ζ(2m) =
(−1)m−1(2π)2m

2(2m)!
Bm

Proof. Using the reflection formula for the Gamma function, we can rewrite the functional equation for ζ(s) as

ζ(1− s) = 21−sπ−s cos
πs
2
Γ (s)ζ(s).

Setting s = 2m and using the known values of ζ(1− 2m), we get the stated formula.

Remark 13. While explicit values of ζ at positive even integers were computed by Euler, almost nothing is
known about numbers ζ(2m+ 1). In particular, it is not even known if all of them are irrational.

An equivalent way to express the functional equation for ζ(s) is to consider function

ξ(s) :=
s(1− s)

2
π−s/2Γ (s/2)ζ(s),

then using Legendre’s duplication formula (HW#3)

ξ(s) = ξ(1− s).

Remark 14. Functional equation for ζ(s) implies that its non-trivial are located in the strip 0 6<(s) 6 1 and
are symmetric across<(s) = 1/2 axis. The statement of the famous Riemann conjecture is that all non-trivial
zeros are located on the axis<(s) = 1/2.

We will prove the following baby version of Riemann Hypothesis.

Proposition 15. Function ζ(s) does not have zeros on the line<(s) = 1

Lemma 16. For any s = σ + iiit with σ > 0. we have

|ζ(σ )3ζ(σ + iiit)4ζ(σ + 2iiit)| > 1.

Proof of the lemma. We can express log of the above quantity as

X := 3log |ζ(σ )|+ 4log |ζ(σ + iiit)|+ log |ζ(σ + iiit)| = −<

∑
p

3log(1− p−σ ) + 4log(1− p−σ−iiit) + log(1− p−σ−2iiit)

 .
Using the Taylor series expansion of log, we find

X =
∞∑
n=1

cn(3 + 4cosθn + cos(2θn)),

where cn = 1/m iff n = pm for a a prime p and θn = t logn.

Since (3 + 4cosθ + cos(2θ)) = 2(1 + cosθ)2, we have X > 0.


