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Lecture 2

Differentiable maps f : Rm→R
k

In this section we overview the notions of continuity and differentiability for functions defined on open subsets
of Rm with values in R

k . You have studied these notions in the case m = k = 1 in the course of introductory
calculus. In the Complex Variables course we will need it in a specific case m = k = 2. However, since all the
definitions work equally well for any m and k, we will give general definitions.

For v ∈Rn we denote by |v| the length of the corresponding vector.

Definition 1 (Open sets). A subset U ⊂R
n is open if for any x ∈U there exists ε > 0 such that the open ball of

radius ε with its center at x also belongs to U :

Bε(x) := {y ∈Rn | |x − y| < ε} ⊂U.

From now on let U ⊂R
m be an open set and consider a map f : U →R

k .

Definition 2 (Continuity). Map f : U →R
k is continuous at x0 ∈U if

lim
h→0

f (x0 + h) = f (x),

i.e., for any δ > 0 there exists ε = ε(δ) > 0 such that

f (U ∩Bε(x0)) ⊂ Bδ(f (x0)).

Theorem 3. A map f : U →R
k is continuous at every point x0 ∈U if and only if for any open V ⊂R

k , its preimage
f −1(V ) ⊂U is also open.

Proof. Exercise.

Definition 4. Map f : U → R
k is differentiable at x0 ∈ U if there exists a linear operator A : Rm→ R

k (one can
think of A as a k ×m matrix) such that for h ∈Rm in a small neighbourhood of 0

f (x0 + h) = f (x0) +A(h) + o(h),

where o(h) is a little o of h, i.e,

lim
h→0

|o(h)|
|h|

= 0.

Roughly speaking, map f : U → R
k is differentiable at x0 ∈ U if the difference f (x0 + h) − f (x0) as a function

of h is ‘well-approximated’ by a linear map h 7→ A(h). Linear map A is called derivative or differential of f at x
and is often denoted as dfx ∈Hom(Rm,Rk).

Example 5. Consider a map f : C→ C, f : z 7→ z2. Identifying every complex number a+ iiib with a point (a,b)
in R

2, we can interpret f as a map between R
2 and R

2.

Claim: f : R2→R
2 is differentiable at any point (a,b) ∈R2.

Proof: In coordinates, f is given by

f :
[
a
b

]
7→

[
a2 − b2

2ab

]
.

Near point x =
[
a
b

]
for h =

[
ha
hb

]
we have:

f

([
a+ ha
b+ hb

])
− f

([
a
b

])
=

[
2aha − 2bhb
2ahb + 2bha

]
+
[
h2
a − h2

b
hahb

]
=

[
2a −2b
2b 2a

][
ha
hb

]
+ o(h).

Hence the differential at
[
a
b

]
is given by df =

[
2a −2b
2b 2a

]
.

Remark 6. For any point (a,b), the matrix
[
2a −2b
2b 2a

]
belongs to the space M of matrices which we have

introduced in the first lecture. As we will see further, this is not a coincidence!
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Differentiable maps between spaces Rn satisfy all usual properties of differentiation.

• If f ,g : Rm→R
k are differentiable at x ∈Rk , λ ∈R then f + g and λ · f are differentiable with d(f + g)x =

dfx + dgx, d(λ · f )x = λ · dfx

• If f : Rm→R
k is differentiable at x ∈Rm and g : Rk →R

n is differentiable at f (x), then g ◦ f : Rm→R
n is

differentiable at x with
d(g ◦ f )x = dgf (x) ◦ dfx.

Isomorphism between C and M

Recall that M :=
{(
a −b
b a

) ∣∣∣∣ a,b ∈R}
Consider any w ∈C and define a map mw : C→C which multiplies any complex number by w:

mw : z 7→ z ·w.

Identifying as usual C with R
2 with coordinates (<z,=z), we can see thatmw is a linear map between R

2 and
R

2, and can be represented by 2× 2 matrix. Let us call it Aw

Exercise 1. Check that the 2 × 2 matrix Aw representing mw belongs to M. Show that the correspondence
w 7→ Aw is indeed an isomorphism between C and M.

Remark 7. Geometrically, the mapmw : R2→R
2 rotates the plane by the angle Arg(w) and scales it by a factor

of |w|.

Holomorphic functions f : C→C

If we identify C with R
2 then we can apply all of the above to any function f : C → C. In particular, we

can speak of continuous functions f (z). We could also us Definition 4 o define real-differentiable functions
f : C→C. This is not the notion which will be focusing on in this course. Instead we introduce a new concept
of complex derivative.

Let U ⊂C be an open subset.

Definition 8. Function f : U →C is called holomorphic at z0 ∈U if there exists a limit as h approaches 0 in C:

lim
h→0

f (z0 + h)− f (z0)
h

, h ∈C.

This complex number is called complex derivative of f at z0:

f ′(z0) := lim
h→0

f (z0 + h)− f (z0)
h

.

Function f (z) is called holomorphic if it is holomorphic at any point z0 ∈U .

Remark 9. If f : U → C is complex differentiable at z0, then f : U → C is also real-differentiable (in the sense
of Definition 4). Indeed, Definition 8 is equivalent to the identity:

f (z0 + h) = f (z0) + f ′(z0)h+ o(h), h ∈C.

Hence the real differential dfz0
is represented by a map

mf ′(z0) : R2→R
2, (a+ iiib) 7→ f ′(z0) · (a+ iiib).

As shows the following example, the converse is not true.

Example 10. Function f (z) = z is real-differentiable on its domain as a map R
2 → R

2 but not holomorphic.
Indeed, the limit

f (z0 + h− f (z0))
h

=
h
h

does not exist, since the expression on the right hand side goes to 1 as h approaches 0 along the real axis: h = t,
t→ 0, t ∈R and to −1 along the imaginary axis: h = iiit, t→ 0, t ∈R.
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Proposition 11. If f (z), g(z) are holomorphic at z0, then f + g,f · g and f /g (provided g(z0) , 0) are holomorphic at
z0 with the complex derivatives given by the usual formulas.

If f (z) is holomorphic at z0 and g(z) is holomorphic at f (z0), then (g ◦ f ) is also holomorphic at z0 with (g ◦ f )′(z0) =
g ′(f (z0))f ′(z0).

Proof. Exercise.

Example 12. Proposition 11 implies that all polynomials p(z) and rational functions p(z)/q(z) are holomorphic
on their domains.

For instance, f (z) = z2 is holomorphic at any z0 = a+iiib with f ′(z0) = 2z0 = 2(a+iiib) (Compare with Example 5).

Cauchy-Riemann equations

Let f (z) be a complex-valued function of a complex argument. Assume that it is differentiable as a map
R

2→R
2 at z0. In this section, we derive necessary and sufficient conditions on partial derivatives of f for f (z)

to be holomorphic at z0 = x0 + iiiy0.

Let f (x+ iiiy) = u(x,y) + iiiv(x,y) be the real and imaginary parts of f (z).

Theorem 13 (CR equations). Differentiable mapping f (x + iiiy) = u(x,y) + iiiv(x,y), f : R2 → R
2 is holomorphic at

z0 = x0 + iiiy0 if and only if the following Cauchy-Riemann equations are satisfied:
∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0)

∂v

∂x
(x0, y0) = −

∂u

∂y
(x0, y0)

Proof. Necessity: Assume that f (z) is holomorphic at z0. Then the limits with h ∈R, h→ 0

lim
h→0

f (z0 + h)− f (z0)
h

lim
h→0

f (z0 + iiih)− f (z0)
iiih

must coincide. Equating separately the real and the imaginary parts of these limits we find:

lim
h→0

u(x0 + h)−u(x0)
h

= lim
h→0

v(y0 + h)− v(y0)
h

lim
h→0

v(y0 + h)− v(y0)
h

= − lim
h→0

u(x0 + h)−u(x0)
h

which is exactly the CR equations.

Sufficiency: Assume that the CR equations are satisfied. Then the differential of f : R→ R at z0 = x0 + iiiy0 is
given by the Jacobi matrix

df(x0,y0) =


∂u

∂x
(x0, y0)

∂u

∂y
(x0, y0)

∂v

∂x
(x0, y0)

∂v

∂y
(x0, y0)

 .
Under Cauchy-Riemann equations this matrix is of the form[

a −b
b a

]
, a,b ∈R.

For any matrix A =
[
a −b
b a

]
the corresponding map between R

2 ' C and R
2 ' C is the multiplication by a+ iiib

(see discussion about isomorphism between C andM above). Hence the complex derivative exists and is given
by

f ′(z0) =
∂u

∂x
(x0, y0) + iii

∂v

∂x
(x0, y0).
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Using CR equations, we can alternatively write f ′(z0) as follows

f ′ =
∂u

∂x
− iii
∂u

∂y
=
∂v

∂y
+ iii
∂v

∂x
=
∂v

∂y
− iii
∂u

∂y
.

Harmonic functions

Consider function f (z) which is holomorphic in an open domain U ⊂C. Then we have CR equations:
∂u

∂x
=
∂v

∂y
∂v

∂x
= −

∂u

∂y

One of the fundamental theorems of complex analysis, which we prove later, implies that functions u and v
must be infinitely differentiable. Assuming for now that u and v merely continuously differentiable. Using
the fact that ∂2

∂x∂y and ∂2

∂y∂x coincide on continuously differentiable functions, we can compute:

∂2u

∂x2 +
∂u2

∂y2 =
∂2v
∂x∂y

− ∂v2

∂x∂y
= 0.

In other words, ∆u = 0, where ∆ := ∂2

∂x2 + ∂2

∂y2 is the Laplace operator. Similarly ∆v = 0.

Definition 14. If a twice-differentiable function u(x,y) satisfies the Laplace equation

∆u = 0

on an open region U , then we say that u is harmonic in U .

Example 15. Function u(x,y) = x2−y2 is Harmonic in R
2. Indeed, u′′xx+u′′yy = 2−2 = 0. Alternatively, we could

have just observed that u(x,y) =<((x+ iiiy)2) is the real part of a holomorphic function f (z) = z2.

Harmonic functions and the Laplace equation play extremely important role in the modern mathematics. We
will see that theories of harmonic functions on the plane and holomorphic function are intimately related.

Exercise 2. Find a degree 4 polynomial P (x,y) ∈R[x,y] such that ∆P = 0.


