Lecture 20

Conformal mappings

Given a differentiable map $F: \mathbb{R}^2 \supset U \to \mathbb{R}^2$ we have its induced action on vectors $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \mathbb{R}^2$ at $\mathbf{x} \in U$ via

$$F_*(\mathbf{x})v = \begin{bmatrix} \frac{\partial F_1(\mathbf{x})}{\partial x_1}v_1 + \frac{\partial F_1(\mathbf{x})}{\partial x_2}v_2\\ \frac{\partial F_2(\mathbf{x})}{\partial x_1}v_1 + \frac{\partial F_2(\mathbf{x})}{\partial x_2}v_2 \end{bmatrix} = \operatorname{Jac}(F(\mathbf{x}))\begin{bmatrix} v_1\\ v_2 \end{bmatrix} \in \mathbb{R}^2,$$

where $Jac(F(\mathbf{x}))$ is the Jacobi matrix of *F* at \mathbf{x} .

One of the key features of holomorphic mappings $f: U \to \mathbb{C}$ is *conformality*. Namely, given a point z_0 such that $f'(z_0) \neq 0$, map f preserves angles between rooted vectors at z_0 .

Lemma 1. Linear map $A: \mathbb{R}^2 \to \mathbb{R}^2$ preserves oriented angles between vectors if and only if A is of the form

$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix},$$

where $a, b \in \mathbb{R}$ and $a^2 + b^2 \neq 0$.

Proof. Exercise.

Theorem 2. Real differentiable map $f: U \to \mathbb{C}$ has complex derivative $f'(z_0) \neq 0$ at $z_0 \in U$ if and only if f(z) preserves angles between vectors at z_0 .

Proof. By the Lemma, f preserves angles if and inly if its real derivative is given by a matrix of the form

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix},$$

with $a^2 + b^2$. By Cauchy-Riemann identities a real differentiable map has differential of this form if and only if it is holomorphic.

Definition 3. A holomorphic function $f: U \to \mathbb{C}$ is called a *conformal map*, if its derivative does not vanish.

Example 4. Function $f(z) = z^2$ is a conformal mapping from $\mathbb{C} - \{0\}$ onto $\mathbb{C} - \{0\}$.

Fundamental question of complex analysis is to classify open subsets $U \subset \mathbb{C}$ up to conformal equivalence. This raises two questions:

Question. Given $U, V \subset \mathbb{C}$ does there exists a holomorphic bijection $f: U \to V$ (such f is called conformal equivalence between U and V)?

Question. Given $U \subset \mathbb{C}$ what is the group of holomorphic automorphisms $f: U \to U$?

In general, these questions are difficult to answer. However, both of them have a remarkably simple answer if we additionally assume that U and V are simply connected. This is the content of the celebrated Riemann mapping theorem.

Riemann mapping theorem

Theorem 5 (Riemann mapping theorem). Suppose that a connected open subset $U \subseteq \mathbb{C}$ is proper and simply-connected. Given $z_0 \in U$ there exists a unique bijective holomorphic function $F: U \to \mathbb{D}$ such that $F(z_0) = 0$ and $F'(z_0) \in \mathbb{R}_{>0}$.

Proof of the uniqueness. If F_1 and F_2 are two such functions, then $H := F_1 \circ F_2^{-1}$ is an automorphism of \mathbb{D} fixing the origin. By a consequence of Schwarz lemma, any such automorphism has a form $H: z \mapsto e^{i\theta} z$. Conditions $F'_1(z_0), F'_2(z_0) \in \mathbb{R}_{>0}$ imply that H'(0) is also real and positive, therefore H(z) = z.

The existence part of the Riemann mapping theorem is one of the most important and fundamental theorems of our course. Surprisingly, for a result of such significance, this theorem has a rather easy proof.

Normal families

Definition 6. Consider an open connected subset $U \subset \mathbb{C}$ and a family \mathcal{F} of complex-valued functions on U. We say that \mathcal{F} is

- *normal* if for every sequence $\{f_i\}$ from \mathcal{F} there is a subsequence $\{f_{k_i}\}$ converging on compact subsets of U.
- *locally uniformly bounded* if for any compact $K \subset U$ there exists M > 0 such that |f(z)| < M for all $f \in \mathcal{F}$ and $z \in K$.
- *equicontinuous* on a compact set $K \subset U$ if for any $\epsilon > 0$ there exists $\delta > 0$ such that

for all $(z, w) \in K$ with $|z - w| < \delta$ and any $f \in \mathcal{F}$

$$|f(z) - f(w)| < \epsilon.$$

Remark 7. If there exists a constant M > 0 such that for every $f \in \mathcal{F}$ and $z \in K$ we have |f'(z)| < M, then \mathcal{F} is equicontinuous on K.

Theorem 8 (Montel's theorem). Suppose \mathcal{F} is a family of holomorphic functions on U that is uniformly bounded on compact subsets of U. Then

- 1. \mathcal{F} is equicontinuous on every compact subset $K \subset U$;
- 2. \mathcal{F} is a normal family.

Proof. First, let us prove equicontinuity. This part relies in Cauchy's theorem and essentially uses the fact that the functions in our family are holomorphic.

Given $K \subset U$ take r > 0 such that for every $z_0 \in K$ we have $B_{3r}(z_0) \subset U$. Let $N_{2r}(K)$ be a 2*r*-neighbourhood of *K*:

$$N_{2r}(K) = \{ z \in \mathbb{C} \mid |z - w| \le 2r \text{ for some } w \in K \}.$$

By our assumption on r, $N_{2r}(K)$ is compact and contained in U. Hence, \mathcal{F} is uniformly bounded by some constant B > 0 on $N_{2r}(K)$.

Given any $z, w \in K$ inside a disk $B_r(z_0)$ for $\gamma = \partial B_{2r}(z_0)$, we have

$$f(z) - f(w) = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left[\frac{1}{\zeta - z} - \frac{1}{\zeta - w} \right] d\zeta.$$

Now, for any $\zeta \in \gamma$

$$\left|\frac{1}{\zeta-z}-\frac{1}{\zeta-w}\right| = |z-w| \left|\frac{1}{(\zeta-z)(\zeta-w)}\right| \leq \frac{|z-w|}{r^2}.$$

Therefore

$$|f(z) - f(w)| \le \frac{B}{r}|z - w|.$$

Since this inequality holds for all $f \in \mathcal{F}$ and $z, w \in K$, we conclude that \mathcal{F} is equicontinuous on K.

Now we prove that \mathcal{F} is normal under assumptions of equicontinuity and uniform boundedness. This a version of a general statement known as *Arzelà*-*Ascoli theorem*.

Let $\{f_n\}$ be a sequence from \mathcal{F} . Pick an everywhere dense sequence of points $\{w_j\} \subset U$, e.g., take all the points with rational coordinates. The sequence of values $\{f_n(w_1)\}_{n \in \mathbb{N}}$ is bounded, therefore we can choose a convergent subsequence $\{f_{n,1}(w_1)\}_{n \in \mathbb{N}}$. At the next step we consider a bounded sequence $\{f_{n,1}(w_2)\}$ and choose its convergent subsequence $\{f_{n,2}(w_2)\}$. Repeating this process for all points w_i , we extract a *diagonal* sequence of functions

 $\{g_n\}_{n\in\mathbb{N}}, \qquad g_n:=f_{n,n}$

such that the values at each of the points w_i converge.

We claim that $\{g_n\}$ uniformly converges on *K*. Fix $\epsilon > 0$. Since $\{g_n\}$ is uniformly equicontinuous on *K*, we can find the corresponding $\delta > 0$ and cover *K* by a finite collection of balls $B_{\delta}(w_1), d \dots B_{\delta}(w_k)$.

For $n, m > N(\epsilon)$ large enough, and $z \in B_{\delta}(w_i)$ we have

$$|g_n(z) - g_m(z)| \le |g_n(z) - g_n(w_j)| + |g_n(w_j) - g_m(w_j)| + |g_m(w_j) - g_m(z)| < 3\epsilon,$$

where the first and the last summands are bounded due to equicontinuity, and the middle term due to the fact that $\{g_n(w_j)\}_{n \in \mathbb{N}}$ converges for $j \in 1, ..., k$.

Proof of the Riemann mapping

Lemma 9. If $\{f_n\}$ is a sequence of injective holomorphic functions in $U \subset \mathbb{C}$ that converges uniformly on every compact subset $K \subset U$ to a holomorphic function f(z), then f(z) is either a constant or also injective.

Proof. Assume on the contrary that $f(z_1) = f(z_2)$ and f is not constant. Then the function $g(z) := f(z) - f(z_1)$ has isolated zeros at z_1 and z_2 , while $g_n(z) := g(z) - g(z_1)$ have isolated zero only at z_1 .

By argument principle for a small circle $C_r(z_2)$ enclosing z_2 , we have

$$\frac{1}{2\pi i}\int_{C_r(z_2)}\frac{g'(z)}{g(z)}dz=1,$$

while

$$\frac{1}{2\pi \boldsymbol{i}}\int_{C_r(z_2)}\frac{g_n'(z)}{g_n(z)}dz=0.$$

This is a contradiction, since the integrands are uniformly convergent on $C_r(z_2)$.

Now we turn onto the proof of the theorem.

Step 1. Suppose $U \subsetneq \mathbb{C}$ is a proper simply-connected subset of \mathbb{C} . We claim that U is conformally equivalent to an open subset of \mathbb{D} .

Indeed, pick $\alpha \notin U$. There exists a well defined function $f(z) = \sqrt{z - \alpha}$ in *U*. Clearly f(z) does not take the same value twice, nor the opposite values, since $f(z)^2 = z - \alpha$.

Now, by open mapping, f(U) contains some open disk $D = B_r(w)$, therefore it misses the open disk $B_r(-w)$. Therefore the map $F(z) = \frac{1}{f(z)+w}$ maps bijectively U onto an open subset of $B_{1/r}(0)$.

Step 2. Composing with scalings and translations if necessary, by the first step, we may assume that $U \subset \mathbb{D}$ and $0 \in U$. So we have a non-empty family

$$\mathcal{F} := \{ f : U \to \mathbb{D} \mid \text{holomorphic, injective and } f(0) = 0 \}.$$

Clearly \mathcal{F} is uniformly bounded. Let

$$s := \sup_{f \in \mathcal{F}} |f'(0)|.$$

This supremum is finite, since |f'(0)| is bounded by Cauchy's estimates. Choose a sequence $\{f_n\} \subset \mathcal{F}$ such that $|f'_n(0)| \rightarrow s$. By Montel's theorem, sequence $\{f_n\}$ converges to a holomorphic function f(z), moreover, by the above Lemma, since f(z) is not constant¹, we see that f(z) is injective. Also, by continuity $|f(z)| \leq 1$ on U, so $f \in \mathcal{F}$ and |f'(0)| = s.

Step 3. Function f(z) constructed above conformally maps U onto \mathbb{D} .

Suppose, on the contrary that $\alpha \in \mathbb{D}$ does not belong to f(U). Consider an automorphism of \mathbb{D} interchanging α and 0

$$\psi_{\alpha} := \frac{\alpha - z}{1 - \overline{\alpha} z}.$$

Then simply connected region $W := (\psi_{\alpha} \circ f)(U)$ does not contain 0 and we can define $g(w) := \sqrt{w}$ in *W*. Consider new function

$$F := \psi_{g(\alpha)} \circ g \circ \psi_{\alpha} \circ f.$$

It is easy to see that F(0) = 0, and $F: U \to \mathbb{D}$ is injective, so $F \in \mathcal{F}$. Then we have:

$$f = \Phi \circ F,$$

where $\Phi: \mathbb{D} \to \mathbb{D}$ with $\Phi(0) = 0$ is non-injective. By Schwarz lemma we must have $|\Phi'(0)| < 1$, since otherwise Φ is an automorphism. Therefore

which contradicts the maximality of |f'(0)|.

This proves that $f: U \to \mathbb{D}$ is not only injective but also surjective, and f^{-1} is well-defined, since $f' \neq 0$ on U.