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Lecture 20

Conformal mappings

Given a differentiable map F : R2 ⊃U →R
2 we have its induced action on vectors v =

[
v1
v2

]
∈R2 at x ∈U via

F∗(x)v =


∂F1(x)
∂x1

v1 +
∂F1(x)
∂x2

v2

∂F2(x)
∂x1

v1 +
∂F2(x)
∂x2

v2

 = Jac(F(x))
[
v1
v2

]
∈R2,

where Jac(F(x)) is the Jacobi matrix of F at x.

One of the key features of holomorphic mappings f : U → C is conformality. Namely, given a point z0 such that
f ′(z0) , 0, map f preserves angles between rooted vectors at z0.

Lemma 1. Linear map A : R2→R
2 preserves oriented angles between vectors if and only if A is of the form

A =
[
a b
−b a

]
,

where a,b ∈R and a2 + b2 , 0.

Proof. Exercise.

Theorem 2. Real differentiable map f : U → C has complex derivative f ′(z0) , 0 at z0 ∈ U if and only if f (z) preserves
angles between vectors at z0.

Proof. By the Lemma, f preserves angles if and inly if its real derivative is given by a matrix of the form[
a b
−b a

]
,

with a2 + b2. By Cauchy-Riemann identities a real differentiable map has differential of this form if and only if it
is holomorphic.

Definition 3. A holomorphic function f : U →C is called a conformal map, if its derivative does not vanish.

Example 4. Function f (z) = z2 is a conformal mapping from C− {0} onto C− {0}.

Fundamental question of complex analysis is to classify open subsets U ⊂ C up to conformal equivalence. This
raises two questions:

Question. Given U,V ⊂ C does there exists a holomorphic bijection f : U → V (such f is called conformal equivalence
between U and V )?

Question. Given U ⊂C what is the group of holomorphic automorphisms f : U →U?

In general, these questions are difficult to answer. However, both of them have a remarkably simple answer if we
additionally assume that U and V are simply connected. This is the content of the celebrated Riemann mapping
theorem.
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Riemann mapping theorem

Theorem 5 (Riemann mapping theorem). Suppose that a connected open subsetU ( C is proper and simply-connected.
Given z0 ∈U there exists a unique bijective holomorphic function F : U →D such that F(z0) = 0 and F′(z0) ∈R>0.

Proof of the uniqueness. If F1 and F2 are two such functions, then H := F1 ◦ F−1
2 is an automorphism of D fixing

the origin. By a consequence of Schwarz lemma, any such automorphism has a form H : z 7→ eiiiθz. Conditions
F′1(z0),F′2(z0) ∈R>0 imply that H ′(0) is also real and positive, therefore H(z) = z.

The existence part of the Riemann mapping theorem is one of the most important and fundamental theorems of
our course. Surprisingly, for a result of such significance, this theorem has a rather easy proof.

Normal families

Definition 6. Consider an open connected subset U ⊂ C and a family F of complex-valued functions on U . We
say that F is

• normal if for every sequence {fi} from F there is a subsequence {fki } converging on compact subsets of U .

• locally uniformly bounded if for any compact K ⊂ U there exists M > 0 such that |f (z)| < M for all f ∈ F and
z ∈ K .

• equicontinuous on a compact set K ⊂U if for any ε > 0 there exists δ > 0 such that

for all (z,w) ∈ K with |z −w| < δ and any f ∈ F

|f (z)− f (w)| < ε.

Remark 7. If there exists a constant M > 0 such that for every f ∈ F and z ∈ K we have |f ′(z)| < M, then F is
equicontinuous on K .

Theorem 8 (Montel’s theorem). Suppose F is a family of holomorphic functions on U that is uniformly bounded on
compact subsets of U . Then

1. F is equicontinuous on every compact subset K ⊂U ;

2. F is a normal family.

Proof. First, let us prove equicontinuity. This part relies in Cauchy’s theorem and essentially uses the fact that the
functions in our family are holomorphic.

Given K ⊂U take r > 0 such that for every z0 ∈ K we have B3r (z0) ⊂U . Let N2r (K) be a 2r-neighbourhood of K :

N2r (K) = {z ∈C | |z −w| 6 2r for some w ∈ K}.

By our assumption on r, N2r (K) is compact and contained in U . Hence, F is uniformly bounded by some constant
B > 0 on N2r (K).

Given any z,w ∈ K inside a disk Br (z0) for γ = ∂B2r (z0), we have

f (z)− f (w) =
1

2πiii

∫
γ
f (ζ)

[ 1
ζ − z

− 1
ζ −w

]
dζ.

Now, for any ζ ∈ γ ∣∣∣∣∣ 1
ζ − z

− 1
ζ −w

∣∣∣∣∣ = |z −w|
∣∣∣∣∣ 1
(ζ − z)(ζ −w)

∣∣∣∣∣ 6 |z −w|r2 .
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Therefore
|f (z)− f (w)| 6 B

r
|z −w|.

Since this inequality holds for all f ∈ F and z,w ∈ K , we conclude that F is equicontinuous on K .

Now we prove that F is normal under assumptions of equicontinuity and uniform boundedness. This a version
of a general statement known as Arzelà–Ascoli theorem.

Let {fn} be a sequence from F . Pick an everywhere dense sequence of points {wj } ⊂ U , e.g., take all the points
with rational coordinates. The sequence of values {fn(w1)}n∈N is bounded, therefore we can choose a convergent
subsequence {fn,1(w1)}n∈N. At the next step we consider a bounded sequence {fn,1(w2)} and choose its convergent
subsequence {fn,2(w2)}. Repeating this process for all points wi , we extract a diagonal sequence of functions

{gn}n∈N, gn := fn,n

such that the values at each of the points wi converge.

We claim that {gn} uniformly converges on K . Fix ε > 0. Since {gn} is uniformly equicontinuous on K , we can find
the corresponding δ > 0 and cover K by a finite collection of balls Bδ(w1),d . . .Bδ(wk).

For n,m > N (ε) large enough, and z ∈ Bδ(wj ) we have

|gn(z)− gm(z)| 6 |gn(z)− gn(wj )|+ |gn(wj )− gm(wj )|+ |gm(wj )− gm(z)| < 3ε,

where the first and the last summands are bounded due to equicontinuity, and the middle term due to the fact
that {gn(wj )}n∈N converges for j ∈ 1, . . . k.

Proof of the Riemann mapping

Lemma 9. If {fn} is a sequence of injective holomorphic functions in U ⊂ C that converges uniformly on every compact
subset K ⊂U to a holomorphic function f (z), then f (z) is either a constant or also injective.

Proof. Assume on the contrary that f (z1) = f (z2) and f is not constant. Then the function g(z) := f (z) − f (z1) has
isolated zeros at z1 and z2, while gn(z) := g(z)− g(z1) have isolated zero only at z1.

By argument principle for a small circle Cr (z2) enclosing z2, we have

1
2πiii

∫
Cr (z2)

g ′(z)
g(z)

dz = 1,

while
1

2πiii

∫
Cr (z2)

g ′n(z)
gn(z)

dz = 0.

This is a contradiction, since the integrands are uniformly convergent on Cr (z2).

Now we turn onto the proof of the theorem.

Step 1. Suppose U ( C is a proper simply-connected subset of C. We claim that U is conformally equivalent to an
open subset of D.

Indeed, pick α < U . There exists a well defined function f (z) =
√
z −α in U . Clearly f (z) does not take the same

value twice, nor the opposite values, since f (z)2 = z −α.

Now, by open mapping, f (U ) contains some open disk D = Br (w), therefore it misses the open disk Br (−w). There-
fore the map F(z) = 1

f (z)+w maps bijectively U onto an open subset of B1/r (0).
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Step 2. Composing with scalings and translations if necessary, by the first step, we may assume that U ⊂D and
0 ∈U . So we have a non-empty family

F := {f : U →D | holomorphic, injective and f (0) = 0}.

Clearly F is uniformly bounded. Let
s := sup

f ∈F
|f ′(0)|.

This supremum is finite, since |f ′(0)| is bounded by Cauchy’s estimates. Choose a sequence {fn} ⊂ F such that
|f ′n(0)| → s. By Montel’s theorem, sequence {fn} converges to a holomorphic function f (z), moreover, by the above
Lemma, since f (z) is not constant1, we see that f (z) is injective. Also, by continuity |f (z)| 6 1 on U , so f ∈ F and
|f ′(0)| = s.
Step 3. Function f (z) constructed above conformally maps U onto D.

Suppose, on the contrary that α ∈ D does not belong to f (U ). Consider an automorphism of D interchanging α
and 0

ψα :=
α − z

1−αz
.

Then simply connected region W := (ψα ◦ f )(U ) does not contain 0 and we can define g(w) :=
√
w in W . Consider

new function
F := ψg(α) ◦ g ◦ψα ◦ f .

It is easy to see that F(0) = 0, and F : U →D is injective, so F ∈ F . Then we have:

f = Φ ◦F,

where Φ : D→D with Φ(0) = 0 is non-injective. By Schwarz lemma we must have |Φ ′(0)| < 1, since otherwise Φ is
an automorphism. Therefore

|f ′(0)| < |F′(0)|

which contradicts the maximality of |f ′(0)|.
This proves that f : U →D is not only injective but also surjective, and f −1 is well-defined, since f ′ , 0 on U .

1By the way, why?


