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Lecture 20

Conformal mappings

U1

Given a differentiable map F: R? > U — IR? we have its induced action on vectors v = [v
2
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where Jac(F(x)) is the Jacobi matrix of F at x.

One of the key features of holomorphic mappings f: U — C is conformality. Namely, given a point zy such that
f’(zg) # 0, map f preserves angles between rooted vectors at z.

Lemma 1. Linear map A: R? — R? preserves oriented angles between vectors if and only if A is of the form

where a,b € R and a® + b% 2 0.

Proof. Exercise. ]

Theorem 2. Real differentiable map f: U — C has complex derivative f’(zy) # 0 at zy € U if and only if f(z) preserves
angles between vectors at z.

Proof. By the Lemma, f preserves angles if and inly if its real derivative is given by a matrix of the form

i

with a® + b, By Cauchy-Riemann identities a real differentiable map has differential of this form if and only if it
is holomorphic. O

Definition 3. A holomorphic function f: U — C is called a conformal map, if its derivative does not vanish.

2

Example 4. Function f(z) = z* is a conformal mapping from C — {0} onto C —{0}.

Fundamental question of complex analysis is to classify open subsets U C C up to conformal equivalence. This
raises two questions:

Question. Given U,V C C does there exists a holomorphic bijection f: U — V (such f is called conformal equivalence
between U and V)?

Question. Given U C C what is the group of holomorphic automorphisms f: U — U?

In general, these questions are difficult to answer. However, both of them have a remarkably simple answer if we
additionally assume that U and V are simply connected. This is the content of the celebrated Riemann mapping
theorem.
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Riemann mapping theorem

Theorem 5 (Riemann mapping theorem). Suppose that a connected open subset U C C is proper and simply-connected.
Given zy € U there exists a unique bijective holomorphic function F: U — ID such that F(zy) = 0 and F’(zg) € Ryy.

Proof of the uniqueness. If Fy and F, are two such functions, then H := F; o F;! is an automorphism of ID fixing
the origin. By a consequence of Schwarz lemma, any such automorphism has a form H: z > ¢z, Conditions
F{(20),F}(z0) € Ry imply that H’(0) is also real and positive, therefore H(z) = z. O

The existence part of the Riemann mapping theorem is one of the most important and fundamental theorems of
our course. Surprisingly, for a result of such significance, this theorem has a rather easy proof.

Normal families

Definition 6. Consider an open connected subset U C C and a family F of complex-valued functions on U. We
say that F is

* normal if for every sequence {f;} from F there is a subsequence {fy } converging on compact subsets of U.

e locally uniformly bounded if for any compact K C U there exists M > 0 such that |f(z)| < M for all f € F and
ze K.

* equicontinuous on a compact set K C U if for any € > 0 there exists 6 > 0 such that
for all (z,w) e K with |z—w| <6 and any f € F
If(z) - f(w)l <e.

Remark 7. If there exists a constant M > 0 such that for every f € F and z € K we have |f’(z)] < M, then F is
equicontinuous on K.

Theorem 8 (Montel’s theorem). Suppose F is a family of holomorphic functions on U that is uniformly bounded on
compact subsets of U. Then

1. F is equicontinuous on every compact subset K C U;

2. F is a normal family.

Proof. First, let us prove equicontinuity. This part relies in Cauchy’s theorem and essentially uses the fact that the
functions in our family are holomorphic.

Given K c U take r > 0 such that for every z; € K we have B3,(zg) C U. Let N,,(K) be a 2r-neighbourhood of K:
N, (K)={z€ C||z—-w| < 2r for some w € K}.

By our assumption on r, N;,(K) is compact and contained in U. Hence, F is uniformly bounded by some constant
B> 0on N,,(K).

Given any z,w € K inside a disk B,(zq) for ¥ = dB;,(zp), we have

f=fw =z | 50 -

Now, for any C € ¥
1
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Therefore B
F(2)- fw) < Zlz-wl
Since this inequality holds for all f € F and z,w € K, we conclude that F is equicontinuous on K.

Now we prove that F is normal under assumptions of equicontinuity and uniform boundedness. This a version
of a general statement known as Arzela—Ascoli theorem.

Let {f,} be a sequence from F. Pick an everywhere dense sequence of points {w;} C U, e.g., take all the points
with rational coordinates. The sequence of values {f,(w;)},en is bounded, therefore we can choose a convergent
subsequence {f, 1(w)},en. At the next step we consider a bounded sequence {f,, ; (w;)} and choose its convergent
subsequence {f, »(w;)}. Repeating this process for all points w;, we extract a diagonal sequence of functions

{gn}nele 8&n = fn,n

such that the values at each of the points w; converge.

We claim that {g,} uniformly converges on K. Fix € > 0. Since {g,} is uniformly equicontinuous on K, we can find
the corresponding 0 > 0 and cover K by a finite collection of balls Bs(wy),d... Bs(wy)-

For n,m > N(e) large enough, and z € Bs(w;) we have
11(2) = g (2)| <180 (2) — gn(w))l + |gn(w)) — gu(w)) + |gm(w)) — g (2)] < 3e,

where the first and the last summands are bounded due to equicontinuity, and the middle term due to the fact
that {g,(w;)},en converges for j € 1,...k. O

Proof of the Riemann mapping

Lemma 9. If {f,,} is a sequence of injective holomorphic functions in U C C that converges uniformly on every compact
subset K C U to a holomorphic function f(z), then f(z) is either a constant or also injective.

Proof. Assume on the contrary that f(z;) = f(z;) and f is not constant. Then the function g(z) := f(z) — f(z;) has
isolated zeros at z; and z,, while g,,(z) := g(z) — g(z;) have isolated zero only at z;.

By argument principle for a small circle C,(z;) enclosing z;, we have

1 g'(2)

o dz = 1,
21 Jc (z,) §(2)
while ) ,
SR i
21 Jc,(z,) 8n(2)
This is a contradiction, since the integrands are uniformly convergent on C,(z;). O

Now we turn onto the proof of the theorem.

Step 1. Suppose U C C is a proper simply-connected subset of C. We claim that U is conformally equivalent to an
open subset of D.

Indeed, pick a ¢ U. There exists a well defined function f(z) = vz—a in U. Clearly f(z) does not take the same
value twice, nor the opposite values, since f(z)* =z - a.

Now, by open mapping, f(U) contains some open disk D = B,(w), therefore it misses the open disk B,(—w). There-

fore the map F(z) = f(zﬁ maps bijectively U onto an open subset of By,,(0).
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Step 2. Composing with scalings and translations if necessary, by the first step, we may assume that U c D and
0 € U. So we have a non-empty family

F :={f: U — D | holomorphic, injective and f(0) = 0}.

Clearly F is uniformly bounded. Let
s:=sup|f’(0)l.
feF
This supremum is finite, since [f’(0)| is bounded by Cauchy’s estimates. Choose a sequence {f,} C F such that
|f,/(0)] — s. By Montel’s theorem, sequence {f,,} converges to a holomorphic function f(z), moreover, by the above
Lemma, since f(z) is not constant!, we see that f(z) is injective. Also, by continuity |f(z)] <1 on U, so f € F and
If"(0) =s.

Step 3. Function f(z) constructed above conformally maps U onto D.

Suppose, on the contrary that a € ID does not belong to f(U). Consider an automorphism of ID interchanging «

and 0 o0z

Py :

Then simply connected region W := (1, o f)(U) does not contain 0 and we can define g(w) := yw in W. Consider
new function

“1-az

F:= #’g(a)ogolzbaof'
It is easy to see that F(0) =0, and F: U — DD is injective, so F € 7. Then we have:

f=DoF,

where ©@: ID — ID with ®(0) = 0 is non-injective. By Schwarz lemma we must have |®’(0)| < 1, since otherwise ® is
an automorphism. Therefore

If'(O) <[F’(0)]
which contradicts the maximality of |f’(0)|.

This proves that f: U — ID is not only injective but also surjective, and f~! is well-defined, since f’# 0 on U.

1By the way, why?



