Fall 2019

Lecture 21

Riemann mapping theorem

Examples of conformal equivalences

Once we have proved Riemann mapping theorem, let us consider introduce explicit conformal equivalences between various regions.

Example 1. Let **H** be the upper half-plane.

$$\mathbb{H} := \{ \mathbb{Im}(z) > 0 \}.$$

Cayley transform $F(z) := \frac{i-z}{i+z}$ and its inverse $G(w) := i \frac{1-w}{1+w}$ provide equivalences between \mathbb{H} and \mathbb{D} :

$$F\colon \mathbb{H}\to \mathbb{D}; \quad G\colon \mathbb{D}\to \mathbb{H}.$$

Example 2. For a fixed $\alpha \in (0, 2]$ let $f(z) = z^{\alpha}$ be the principle branch defined in \mathbb{H} . Then $f(\mathbb{H})$ is an infinite sector between the rays $[0, +\infty)$ and $e^{i\pi\alpha}[0, +\infty)$.

We can equivalently rewrite

$$f(z) = \alpha \int_0^z \zeta^{-\beta} d\zeta$$

where $\beta = 1 - \alpha$. This representation will be significant in the view of the Schwarz-Christoffel integrals below.

Example 3. The map $z \mapsto \log z$ defined as the principle branch of logarithm takes the upper half-plane to the strip

$$S := \{ u + \mathbf{i}v \mid u \in \mathbb{R}, v \in (0, \pi) \}$$

and the upper half-disk to a half-strip.

Example 4. Function $\sin(z)$ is a composition of e^{iz} , iz and -1/2(z+1/z) taking half-strip { $\Re e(z) \in (-\pi/2, \pi/2)$, Im(z) > 0} to the upper half-plane.

Applications to Dirichlet problem

Dirichlet problem in an open set $U \subseteq \mathbb{C}$ with a *nice* (e.g., given by a simple closed piecewise smooth curve γ) boundary ∂U consists of solving equation for $u: \overline{U} \to \mathbb{R}$

$$\begin{cases} \Delta u = 0 & \text{ in } U \\ u = f & \text{ on } \partial U, \end{cases}$$
(1)

where $f: \partial U \to \mathbb{R}$ is a given function. Normally, the second equation is imposed only at points of continuity of f. We have seen that if $U = \mathbb{D}$ is the unit disk and f is piecewise continuous, solution to (1) is given by the Poisson integral:

$$u(w) = P_f(w) := \frac{1}{2\pi} \int_{|z|=1} K_w(e^{i\alpha}) f(e^{i\alpha}) d\alpha,$$

where $K_w(z) := \Re e\left(\frac{z+w}{z-w}\right)$ is the Poisson kernel.

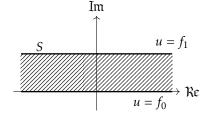
Now, assume we want to solve Dirichlet problem in an infinite strip

$$S := \{ 0 < \operatorname{Im}(z) < 1 \}.$$

Then we have two mappings $F \colon \mathbb{D} \to S$ and $G \colon S \to \mathbb{D}$

$$F(w) = \frac{1}{\pi} \log \left(\boldsymbol{i} \frac{1-w}{1+w} \right) \quad \text{and} \quad G(z) = \frac{\boldsymbol{i} - e^{\pi z}}{\boldsymbol{i} + e^{\pi z}}.$$

If u(w) is a harmonic function in \mathbb{D} , then u(G(z)) will be a harmonic function in *S*. Mapping *G* extend to a continuous map defined on \overline{S} sending line Im = 1 to the lower half-circle and line Im = 0 to the upper half-circle. If we want to solve Dirichlet problem in *S* we can now translate it to a problem in \mathbb{D} .



Given continuous **bounded** real-valued functions f_0 and f_1 we use *F* to pull-back them to functions on $\partial \mathbb{D} - \{\pm 1\}$.

$$\begin{split} \tilde{f}(e^{i\varphi}) &= f_1(F(e^{i\varphi}) - i), \quad -\pi < \varphi < 0 \\ \\ \tilde{f}(e^{i\varphi}) &= f_0(F(e^{i\varphi})), \quad 0 < \varphi < \pi. \end{split}$$

Then we can solve the corresponding Dirichlet problem in $\mathbb D$

$$\tilde{u}(w) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_w(e^{i\alpha}) \tilde{f}(e^{i\alpha}) d\alpha.$$

Then $u(z) := \tilde{u}(G(z))$ is the desired function. Changing the integration variable and working through the necessary algebra, we can arrive at an explicit formula

$$u(x,y) = \frac{\sin \pi y}{2} \left(\int_{\mathbb{R}} \frac{f_0(x-t)}{\cosh \pi t - \cos \pi y} dt + \int_{\mathbb{R}} \frac{f_1(x-t)}{\cosh \pi t + \cos \pi y} dt \right).$$

Remark 5. Of course the same scheme works as long as we can consider a conformal equivalence $f: U \to \mathbb{D}$ and extend it continuously to the boundary.

Behavior at the boundary

For applications of the Riemann mapping theorem, it is important to understand when conformal equivalence $f: U \to V$ continuously extends to the boundary $f: \overline{U} \to \overline{V}$. The following example shows that in general this is not the case.

Example 6. Map $z \mapsto \sqrt{z^2 - 1}$ from $\{\Re \varepsilon(z) > 0\} - (0, 1] \rightarrow \{\Re \varepsilon(z) > 0\}$ does not extend to a continuous map on $\{\Re \varepsilon(z) \ge 0\}$.

Luckily, such extension exists for many regions which we face in practice. The following theorem gives the statement for *polygonal regions P*, namely bounded simply-connected open sets whose boundary is a polygonal line *p*.

Theorem 7. If $F: \mathbb{D} \to P$ is a conformal map, then F extends to a continuous bijection from \overline{D} to \overline{P} .

We will not prove the above theorem (if you are interested, you can find a proof in Ch. 8 of Stein-Shakarchi).

Remark 8. The above theorem remain valid if we consider bounded simply-connected open sets with simple piecewise smooth boundary.

It turns out, that in the case of polygonal regions, the conformal equivalence $F: \mathbb{H} \to P$ can be found explicitly.

Theorem 9. A holomorphic function giving equivalence between \mathbb{H} and P, where P is a polygon with angles $\{\pi \alpha_k\}$ is given by

$$F(z) = c_1 S(z) + c_2,$$

where S(z) is the Schwarz-Christoffel integral

$$S(z) := \int_0^z \frac{d\zeta}{(\zeta - A_1)^{\beta_1} \dots (\zeta - A_n)^{\beta_n}}.$$

Here $A_1 < A_2 < \cdots < A_n$ *are n distinct points on the real axis and* $\beta_k = 1 - \alpha_k$.

Remark 10. Since $\sum \beta_k = 2$, the Schwarz-Christoffel integral converges at ∞ , and by Cauchy theorem there exists a finite limit $\lim_{z\to\infty} S(z)$.

Example 11. Elliptic integral

$$\kappa(z) = \int_0^z \frac{d\zeta}{(1-\zeta^2)^{1/2}(1-k^2\zeta^2)^{1/2}}, \quad k \in (0,1)$$

maps upper half-plane onto rectangle with vertices $\pm K, \pm K + iK'$.