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Lecture 22

Analytic continuation

We have encountered in this course that often a given holomorphic function f : U → C can extended to a holo-
morphic function in a larger domain. By rigidity of holomorphic functions it follows that if such extension exists,
then it must be unique. Today we will discuss some necessary examples ensuring the existence of such extension,
called analytic continuation.

Singular points on ∂U

Definition 1. Let f : U →C be a holomorphic function, and consider a point p ∈ ∂U on the boundary of U . Point
p is a regular point of f , if there exists a holomorphic function g(z) defined in a small disk Bε(p), such that on
U ∩Bε(p) functions f (z) and g(z) coincide.

Otherwise, we call p a singular point.

Existence of singular points is the only obstruction to the extension of a holomorphic function in a disk f : Br (z0)→
C to a larger disk BR(z0).

Theorem 2. Suppose f (z) is analytic in Br (z0) and its power series has radius of convergence 0 < r <∞. Then f (z) has
at least one singular point p ∈ ∂Br (z0).

Proof. Assume on the contrary that all points p ∈ ∂Br (z0) are regular. By compactness, we can cover ∂Br (z0) with a
finite number of open disks Bi and find a holomorphic function gi(z) in each Bi such that gi(z) = f (z) in Br (z0)∩Bi .
We claim that {f } ∪ {gi}i yields a well-defined function F(z) on U := Br (z0)∪i Bi . For z ∈ U we need to check that
f (z) is ambiguously defined. We can assume that z ∈ Bi ∩Bj .
By our assumption, functions f (z), gi(z) and gj (z) coincide on Bi ∩ Bj ∩ Br (z0). Therefore, gi(z) and gj (z) are two
analytic continuations of the function f (z) = gi(z) = gj (z) defined on Bi ∩Bj ∩Br (z0). Since Bi ∩Bj is connected, we
have gi(z) = gj (z) by the uniqueness of analytic continuation.

We have constructed a holomorphic function (by abuse of notation we call it f (z)) on the open setU = Br (z0)∪iBi ⊃
Br (z0). Therefore f (z) is holomorphic in some larger open disk BR(z0), and has radius of convergence > R > r.
Contradiction.

There exist holomorphic functions in Br (z0) such that all points on ∂Br (z0) are singular, and the function cannot
be extended holomorphically to any larger set.

Example 3. Consider f (z) =
∑∞
n=0 z

2n . Clearly f (z) is holomorphic in B1(0) and unbounded in a neighbourhood
of 1.

Since f (z) satisfies functional equation
f (z2) = f (z)− z,

we have that f (z) is also unbounded at −1. Repeating this argument, we find that all points of the form ζ = e2πm/2n

are singular. Since singular set is closed, it must coincide with the whole unit circle.

In the previous example f (z) had singular points because it was unbounded. The following example shows that
f (z) can be even continuous up to ∂B1(0), yet all points on

Exercise 1. Fix α > 0. Then function
f (z) =

∑
2−nαz2n
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is holomorphic in B1(0), extends to a continuous function on B1(0), yet it does not extend to a holomorphic function
in any larger open set.

Hint: function u(t) := f (e2πiiit) is continuous nowhere differentiable.

Function elements and germs

To formulate main results about analytic continuation in a clean concise way, we will need to introduce several
new notions.

Definition 4. A function element is a pair (f ,U ), where f is holomorphic function in U . We say that two function
elements (f ,U ) and (g,W ) are direct continuations of each other if

1. U ∩W is nonempty and connected;

2. f (z) = g(z) on U ∩W .

We will write (f ,U ) ∼ (g,W ).

Remark 5. The crucial feature of complex analysis is that the notion of direct continuation is not transitive!
Namely, we might have (f1,U1) ∼ (f2,U2) ∼ · · · ∼ (fk ,Uk), with U1 ∩Uk connected, yet f1 , fk on U1 ∩Uk .

Example 6. Consider Uk = {arg(z) ∈ (πk2 ,
πk
2 + π)}, k = 0,1,2,3. In each Uk we can define unambiguously the

function fk(z) = |z|1/2eiiiarg(z)/2, where the branch of arg(z) is chosen according to definition of Uk .

Then we have (f0,U0) ∼ (f1,U1) ∼ (f2,U2) ∼ (f3,U3), yet for z0 = (2 + iii)2 = (3 + 4iii) ∈ U1 ∩U3 we have f1(z0) = 2 + iii
and f3(z0) = −2− iii.

Definition 7. A germ [f ]ζ of a holomorphic function f defined in a neighbourhood of ζ is the equivalence class of
function elements (f ,U ) with ζ ∈ U where two function elements (f1,U1) and (f2,U2) are equivalent, if f1 = f2 on
U1 ∩U2.

Remark 8. Definition of germ makes sense essentially for any functional space on a topological space, e.g., one
can define germs of smooth functions on a smooth manifold, algebraic function on an algebraic variety etc. In our
case, germ of a holomorphic function is uniquely defined by its Taylor’s series.

Definition 9. Analytic continuation of a germ [f ]ζ(0) along a curve γ = ζ(t) between points ζ(0) and ζ(1) is a family
of germs [f ]ζ(t) such that for any t0 ∈ [0,1] there exists a functional element

(g,U )

representing [f ]ζ(t) for all t in a small neighbourhood of t0.

Proposition 10. Analytic continuation of a germ [f ]ζ along a given curve is unique, if exists.

Proof. If [f ]ζ(t) and [g]ζ(t) are two continuations along the same curve, then the set of t ∈ [0,1] such that [f ]ζ(t) =
[f ]ζ(t) is nonempty, closed and open. Therefore [f ]ζ(t) = [g]ζ(t) for all t ∈ [0,1].

Monodromy theorem

Definition 11. Consider an open setU and a germ [f ]ζ , ζ ∈U . We say that [f ]ζ admits an unrestricted continuation
in U if [f ]ζ can be analytically continued along any curve in U .

Example 12. The germ defined by the principle branch of
√
z admits unrestricted continuation in C

∗ := C− {0}.
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Theorem 13 (Monodromy theorem). Assume that the germ [f ]ζ admits an unrestricted continuation inU . If ζ0(t) and
ζ1(t) are two homotopic curves from ζ(0) to ζ(1) then continuations along ζ0 and ζ1 at the endpoint ζ(1) coincide.

Corollary 14. If the germ [f ]ζ admits an unrestricted continuation in a simply-connected open set U , then there exists
a holomorphic g : U →C such that function element (g,U ) represents the germ [f ]ζ .

Proof of the monodromy theorem. Let ζs(t), s ∈ [0,1] be a homotopy between ζ0(t) and ζ1(t). Take s0 ∈ [0,1] and let
[fs0 ]ζ(1) be the result of analytic continuation of [f ]ζ(0) along ζs0 .

We claim that the set
S(s0) := {s | [fs]ζ(1) = [fs0 ]ζ(1)},

of paths ζs such that the continuations along ζs and ζs0 coincide, is open.

Indeed, cover the curve ζs0(t) with small open disks {Dα} such that each germ [f ]ζs0 (t), t ∈ [0,1] is represented by
some (fα ,Dα). By compactness we can assume that there are finitely many disks. Then the same collection (fα ,Dα)
defines analytic continuation along ζsε (t) for sε ∈ (s0 − ε,s0 + ε) for some ε > 0. This proves openness.

Since ∪s0S(s0) = [0,1] and [0,1] is connected, we have that all possible continuations [fs]ζ(1) coincide.

Example 15. Consider a holomorphic function f : U → C in a simply-connected region such that f , 0 in U .
Fix any z0 ∈ U . In a neighborhood of a point f (z0) we can take a branch of logarithm and define locally in a
neighbourhood of z0 a function

G(z) := log(f (z)).

We claim that function G(z) admits unrestricted continuation on U . Let γ(t) be any curve in U starting at z0 and
consider curve f (γ(t)) in C.

C

U C
∗

ew
log(f (z))

f (z)

Since ew : C→ C
∗ is a local bijection, we can lift a neighbourhood of any small arc in C

∗ to C. This would define a
function element which gives an analytic continuation along the arc.

Monodromy theorem ensures that there exists a holomorphic function extending G(z) = log(f (z)) in U .

Picard’s little theorem

Monodromy theorem is an important ingredient in one of the proofs of Picard’s little theorem.

Theorem 16 (Picard’s little theorem). A non-constant entire function f (z) : C→C misses at most one value.

For the sake of contradiction, assume that f (z) misses points a,b ∈ C. By considering (f (z) − b)/(a − b), we can
assume that f (z) misses 0 and 1. Theory of elliptic curves and modular functions implies the existence of a special
λ-function

λ : H→C− {0,1}.

such that λ′ , 0. In particular, λ : H→C− {0,1} is a local bijection.

Remark 17. Topologically, map λ realizes universal cover of C − {0,1}. Since fundamental group of C − {0,1} is
π1(C− {0,1}) ' F2 the free group with two generators, there is an action of F2 on H and λ is constant on orbits of
this action.
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We can repeat the argument in the above example of logarithm and lift f : C→C− {0,1} to a function λ−1(f (z)):

H

C C− {0,1}.

λ
λ−1(f (z))

f (z)

Thus we would get an entire function with values in H. Since H is conformally equivalent to D, Liouville’s
theorem implies that λ−1(f (z)) is constant. Contradiction.


